2月27日,在如火如荼的芝加哥市長選舉前夕,一個自稱“芝加哥湖畔新聞”(Chicago Lakefront News)的推特賬號發(fā)布了候選人保羅?瓦拉斯(Paul Vallas)的一張照片和一段音頻。此前擔任市政府預算主任和學區(qū)主管的瓦拉斯,是四位角逐芝加哥最高職位的參選人之一。根據這段音頻,他似乎在刻意淡化警察槍擊事件,說“在我那個時代,”一位警察在其職業(yè)生涯中可能會殺死多達18位平民,“沒有人會眨一下眼睛。”這段視頻繼續(xù)說道:“這種‘停止為警察提供資金’的言論將導致芝加哥陷于動蕩,無法無天。我們現在需要做的,不是撤銷警察資金,而是重新為他們提供資金支持。”
事實證明,瓦拉斯并沒有說過這些話。這段視頻很快就被證偽,很可能是用某個容易訪問,用于克隆聲音的人工智能軟件制作而成。在視頻發(fā)布前幾天才注冊的“芝加哥湖畔新聞”很快就刪除了這條推文——但在此之前,它已經被成千上萬人看到并廣泛轉發(fā),一些人顯然上當了,相信“錄音”是真實的。這段音頻或許對市長選舉影響甚微:瓦拉斯贏得了多數選票,并進入第二輪決選階段,不過最終,他以微弱劣勢敗北。但專家們表示,這種克隆瓦拉斯聲音的做法堪稱一次令人驚悚的預演:拜人工智能的飛速發(fā)展所賜,2024年美國總統大選很可能會遭遇類似虛假信息的侵襲。
這些新型人工智能系統被統稱為“生成式人工智能”。比如,最近大火特火的文本處理工具ChatGPT只需幾個提示,就能生成學生期末論文和商業(yè)電子郵件。但它只是這種技術的一個例子而已。一家名為ElevenLabs的公司發(fā)布了一款可以利用僅僅幾秒長的樣本克隆聲音的軟件。此外,現在任何人都可以通過訂購OpenAI的DALL-E 2、Stable Diffusion或Midjourney等軟件生成逼真的靜態(tài)圖像。盡管人工智能利用文本提示創(chuàng)建視頻的能力還處于初級階段,比如紐約初創(chuàng)公司Runway開發(fā)的軟件可以生成幾秒鐘長的視頻片段,但精通深度偽造技術的騙子完全可以制作出足以亂真,讓許多人上當受騙的假視頻。
紐約大學(New York University)認知科學名譽教授、人工智能專家加里·馬庫斯(Gary Marcus)憂心忡忡地表示:“這真的令人不寒而栗,寢食難安。”他一直在警告公眾,支撐這項技術的大型語言模型是民主面臨的一大威脅。盡管我們已經在過去幾屆大選中見證過人們利用社交媒體發(fā)布和傳播虛假信息的景象,但人工智能的強悍能力遠非人類所能企及——正是這種以前所未有的數量和速度傳播假消息的能力,以及非母語人士現在只需要敲幾下鍵盤就可以用大多數語言寫出通暢文本這一事實,使得這種新技術成為一個巨大威脅。“很難想象人工智能生成的虛假信息不會在下次大選中掀起波瀾。”他說。
馬庫斯指出,對于像俄羅斯這樣的民族國家來說,新的人工智能工具特別有用。在俄羅斯,宣傳的目標與其說是說服,倒不如說是用海量謊言和半真半假的信息壓制目標受眾,讓其無從辨?zhèn)巍Lm德公司(Rand Corporation)的一項研究將這種策略稱為“謊言水管”。其目的是制造混亂,破壞信任,使人們更傾向于相信經由社會關系獲得的信息,而不是專家分享的信息。
并不是每個人都確信,如今的情勢像馬庫斯描述的那樣驚悚——至少現在還不是。專門研究人工智能和新興技術影響的布魯金斯學會(Brookings Institution)研究員克里斯·梅瑟羅爾(Chris Meserole)指出,最近幾屆總統選舉已經出現了非常高水平的人造虛假信息,他不確定新的人工智能語言模型會帶來顯著變化。“我認為這不會徹底改變游戲規(guī)則,2024年預計不會跟2020年或2016年有明顯不同。”他說。
梅瑟羅爾還認為,視頻深度偽造技術還不足以攪亂2024年大選(盡管他認為,2028年的情況恐怕會有所不同)。真正讓梅瑟羅爾擔憂的是語音克隆。他指出,一個很容易想象的場景是,一段音頻在選舉的關鍵時刻浮出水面,它記錄的據稱是候選人在私下場合發(fā)表的可恥言論。盡管在場人士可能會否認音頻的真實性,但外人恐怕很難確定。
那么,虛假敘事究竟是會說服任何人,還是只會強化一些人的現有信念?牛津互聯網研究所(Oxford Internet Institute)的技術與監(jiān)管教授桑德拉·瓦赫特(Sandra Wachter)表示,相關研究給出了相互矛盾的結論。但在一場勢均力敵的選舉中,即便是這種邊際效應也可能是決定性的。
面對機器生成式假新聞的威脅,一些人認為人工智能本身可能是最好的防御手段。在西班牙,一家名為Newtral,專門對政客言論進行事實核查的公司,正在試驗類似于ChatGPT的大型語言模型。首席技術官魯本·米格斯·佩雷斯(Ruben Miguez Perez)表示,這些模型不能真正驗證事實,但可以幫助人們更好地揭穿謊言。這種技術能夠在一段內容做出值得核查的事實聲明時進行標記,還能檢測其他宣揚相同敘事的內容,這一過程稱為“聲明匹配”。與其他機器學習技術結合使用,這些大型語言模型也有望根據內容蘊含的情緒來評估某種說法是錯誤信息的可能性。米格斯·佩雷斯指出,借助這些方法,Newtral已經將識別可疑陳述所耗費的時間減少了70%到80%。
大型社交媒體平臺,比如臉書(Facebook)和谷歌(Google)旗下的YouTube,一直在研究具備類似功能的人工智能系統。Facebook的母公司Meta表示,在2020年總統大選前夕,這家社交平臺為超過1.8億條被第三方事實核查員揭穿的內容貼上了警告標識。盡管如此,仍然有大量虛假信息蒙混過關。事實上,人工智能模型尤其難以捕捉那些借助圖像和文本來傳遞觀點的“表情包”。Meta宣稱,自2020年大選以來,其人工智能系統獲得了長足進步,但虛假敘事散布者正在持續(xù)不斷地設計一批批人工智能模型從未見過的新變體。
馬庫斯指出,合理的監(jiān)管或許能發(fā)揮一定作用:政府應該要求大型語言模型的創(chuàng)建者刻上“數字水印”,從而讓其他算法更容易識別人工智能生成的內容。作為ChatGPT的創(chuàng)建者,OpenAI確實談過這種水印,但尚未付諸實施。與此同時,該公司還發(fā)布了免費的人工智能內容檢測軟件,但這種軟件只在大約三分之一的情況下有效。馬庫斯還表示,國會應該將大規(guī)模制造和傳播虛假信息定為非法行為。盡管第一修正案的支持者可能會高聲反對,但憲法的制定者無論如何都想象不到未來有一天,人們只需按一下按鈕,就能利用技術生成無數令人信服的謊言。
話說回來,美利堅建國之時,即18世紀末期,也是一個傳播虛假信息的黃金時代。層出不窮的匿名傳單和黨派報紙肆無忌憚地兜售政敵和對立黨派的卑鄙故事。牛津大學的瓦赫特指出,民主在那時得以幸存。也許這一次也會如此。但我們很可能會見證一場史無前例的選舉活動。(財富中文網)
譯者:任文科
2月27日,在如火如荼的芝加哥市長選舉前夕,一個自稱“芝加哥湖畔新聞”(Chicago Lakefront News)的推特賬號發(fā)布了候選人保羅?瓦拉斯(Paul Vallas)的一張照片和一段音頻。此前擔任市政府預算主任和學區(qū)主管的瓦拉斯,是四位角逐芝加哥最高職位的參選人之一。根據這段音頻,他似乎在刻意淡化警察槍擊事件,說“在我那個時代,”一位警察在其職業(yè)生涯中可能會殺死多達18位平民,“沒有人會眨一下眼睛。”這段視頻繼續(xù)說道:“這種‘停止為警察提供資金’的言論將導致芝加哥陷于動蕩,無法無天。我們現在需要做的,不是撤銷警察資金,而是重新為他們提供資金支持。”
事實證明,瓦拉斯并沒有說過這些話。這段視頻很快就被證偽,很可能是用某個容易訪問,用于克隆聲音的人工智能軟件制作而成。在視頻發(fā)布前幾天才注冊的“芝加哥湖畔新聞”很快就刪除了這條推文——但在此之前,它已經被成千上萬人看到并廣泛轉發(fā),一些人顯然上當了,相信“錄音”是真實的。這段音頻或許對市長選舉影響甚微:瓦拉斯贏得了多數選票,并進入第二輪決選階段,不過最終,他以微弱劣勢敗北。但專家們表示,這種克隆瓦拉斯聲音的做法堪稱一次令人驚悚的預演:拜人工智能的飛速發(fā)展所賜,2024年美國總統大選很可能會遭遇類似虛假信息的侵襲。
這些新型人工智能系統被統稱為“生成式人工智能”。比如,最近大火特火的文本處理工具ChatGPT只需幾個提示,就能生成學生期末論文和商業(yè)電子郵件。但它只是這種技術的一個例子而已。一家名為ElevenLabs的公司發(fā)布了一款可以利用僅僅幾秒長的樣本克隆聲音的軟件。此外,現在任何人都可以通過訂購OpenAI的DALL-E 2、Stable Diffusion或Midjourney等軟件生成逼真的靜態(tài)圖像。盡管人工智能利用文本提示創(chuàng)建視頻的能力還處于初級階段,比如紐約初創(chuàng)公司Runway開發(fā)的軟件可以生成幾秒鐘長的視頻片段,但精通深度偽造技術的騙子完全可以制作出足以亂真,讓許多人上當受騙的假視頻。
紐約大學(New York University)認知科學名譽教授、人工智能專家加里·馬庫斯(Gary Marcus)憂心忡忡地表示:“這真的令人不寒而栗,寢食難安。”他一直在警告公眾,支撐這項技術的大型語言模型是民主面臨的一大威脅。盡管我們已經在過去幾屆大選中見證過人們利用社交媒體發(fā)布和傳播虛假信息的景象,但人工智能的強悍能力遠非人類所能企及——正是這種以前所未有的數量和速度傳播假消息的能力,以及非母語人士現在只需要敲幾下鍵盤就可以用大多數語言寫出通暢文本這一事實,使得這種新技術成為一個巨大威脅。“很難想象人工智能生成的虛假信息不會在下次大選中掀起波瀾。”他說。
馬庫斯指出,對于像俄羅斯這樣的民族國家來說,新的人工智能工具特別有用。在俄羅斯,宣傳的目標與其說是說服,倒不如說是用海量謊言和半真半假的信息壓制目標受眾,讓其無從辨?zhèn)巍Lm德公司(Rand Corporation)的一項研究將這種策略稱為“謊言水管”。其目的是制造混亂,破壞信任,使人們更傾向于相信經由社會關系獲得的信息,而不是專家分享的信息。
并不是每個人都確信,如今的情勢像馬庫斯描述的那樣驚悚——至少現在還不是。專門研究人工智能和新興技術影響的布魯金斯學會(Brookings Institution)研究員克里斯·梅瑟羅爾(Chris Meserole)指出,最近幾屆總統選舉已經出現了非常高水平的人造虛假信息,他不確定新的人工智能語言模型會帶來顯著變化。“我認為這不會徹底改變游戲規(guī)則,2024年預計不會跟2020年或2016年有明顯不同。”他說。
梅瑟羅爾還認為,視頻深度偽造技術還不足以攪亂2024年大選(盡管他認為,2028年的情況恐怕會有所不同)。真正讓梅瑟羅爾擔憂的是語音克隆。他指出,一個很容易想象的場景是,一段音頻在選舉的關鍵時刻浮出水面,它記錄的據稱是候選人在私下場合發(fā)表的可恥言論。盡管在場人士可能會否認音頻的真實性,但外人恐怕很難確定。
那么,虛假敘事究竟是會說服任何人,還是只會強化一些人的現有信念?牛津互聯網研究所(Oxford Internet Institute)的技術與監(jiān)管教授桑德拉·瓦赫特(Sandra Wachter)表示,相關研究給出了相互矛盾的結論。但在一場勢均力敵的選舉中,即便是這種邊際效應也可能是決定性的。
面對機器生成式假新聞的威脅,一些人認為人工智能本身可能是最好的防御手段。在西班牙,一家名為Newtral,專門對政客言論進行事實核查的公司,正在試驗類似于ChatGPT的大型語言模型。首席技術官魯本·米格斯·佩雷斯(Ruben Miguez Perez)表示,這些模型不能真正驗證事實,但可以幫助人們更好地揭穿謊言。這種技術能夠在一段內容做出值得核查的事實聲明時進行標記,還能檢測其他宣揚相同敘事的內容,這一過程稱為“聲明匹配”。與其他機器學習技術結合使用,這些大型語言模型也有望根據內容蘊含的情緒來評估某種說法是錯誤信息的可能性。米格斯·佩雷斯指出,借助這些方法,Newtral已經將識別可疑陳述所耗費的時間減少了70%到80%。
大型社交媒體平臺,比如臉書(Facebook)和谷歌(Google)旗下的YouTube,一直在研究具備類似功能的人工智能系統。Facebook的母公司Meta表示,在2020年總統大選前夕,這家社交平臺為超過1.8億條被第三方事實核查員揭穿的內容貼上了警告標識。盡管如此,仍然有大量虛假信息蒙混過關。事實上,人工智能模型尤其難以捕捉那些借助圖像和文本來傳遞觀點的“表情包”。Meta宣稱,自2020年大選以來,其人工智能系統獲得了長足進步,但虛假敘事散布者正在持續(xù)不斷地設計一批批人工智能模型從未見過的新變體。
馬庫斯指出,合理的監(jiān)管或許能發(fā)揮一定作用:政府應該要求大型語言模型的創(chuàng)建者刻上“數字水印”,從而讓其他算法更容易識別人工智能生成的內容。作為ChatGPT的創(chuàng)建者,OpenAI確實談過這種水印,但尚未付諸實施。與此同時,該公司還發(fā)布了免費的人工智能內容檢測軟件,但這種軟件只在大約三分之一的情況下有效。馬庫斯還表示,國會應該將大規(guī)模制造和傳播虛假信息定為非法行為。盡管第一修正案的支持者可能會高聲反對,但憲法的制定者無論如何都想象不到未來有一天,人們只需按一下按鈕,就能利用技術生成無數令人信服的謊言。
話說回來,美利堅建國之時,即18世紀末期,也是一個傳播虛假信息的黃金時代。層出不窮的匿名傳單和黨派報紙肆無忌憚地兜售政敵和對立黨派的卑鄙故事。牛津大學的瓦赫特指出,民主在那時得以幸存。也許這一次也會如此。但我們很可能會見證一場史無前例的選舉活動。(財富中文網)
譯者:任文科
ON FEB. 27, the eve of Chicago’s mayoral election, a Twitter account calling itself Chicago Lakefront News posted an image of candidate Paul Vallas, a former city budget director and school district chief who was in a tight four-way contest for the city’s top job, along with an audio recording. On the soundtrack, Vallas seems to downplay police shootings, saying that “in my day” a cop could kill as many as 18 civilians in his career and “no one would bat an eye.” The audio continues, “This ‘Defund the Police’ rhetoric is going to cause unrest and lawlessness in the city of Chicago. We need to stop defunding the police and start refunding them.”
As it turned out, Vallas said none of those things. The audio was quickly debunked as a fake, likely created with easily accessible artificial intelligence software that clones voices. The Chicago Lakefront News account, which had been set up just days before the video was posted, quickly deleted the post—but not before the tweet had been seen by thousands and widely recirculated, with some apparently tricked into believing the “recording” was authentic. The audio had little impact on the mayoral race: Vallas won a plurality and was headed toward a runoff election at press time. But the Vallas voice clone is a scary preview of the sort of misinformation experts say we should expect to face in the 2024 U.S. presidential election, thanks to rapid advances in A.I. capabilities.
These new A.I. systems are collectively referred to as “generative A.I.” ChatGPT, the popular text-based tool that spits out student term papers and business emails with a few prompts, is just one example of the technology. A company called ElevenLabs has released software that can clone voices from a sample just a few seconds long, and anyone can now order up photorealistic still images using software such as OpenAI’s DALL-E 2, Stable Diffusion, or Midjourney. While the ability to create video from a text prompt is more nascent—New York–based startup Runway has created software that produces clips a few seconds in length—a scammer skilled in deepfake techniques can create fake videos good enough to fool many people.
“We should be scared shitless,” says Gary Marcus, professor emeritus of cognitive science at New York University and an A.I. expert who has been trying to raise the alarm about the dangers posed to democracy by the large language models underpinning the tech. While people can already write and distribute misinformation (as we’ve seen with social media in past elections), it is the ability to do so at unprecedented volume and speed—and the fact that non-native speakers can now craft fluent prose in most languages with a few keystrokes—that makes the new technology such a threat. “It is hard to see how A.I.-generated misinformation will not become a major force in the next election,” he says.
The new A.I. tools, Marcus says, are particularly useful for a nation-state, such as Russia, where the goal of propaganda is less about persuasion than simply overwhelming a target audience with an avalanche of lies and half-truths. A Rand Corporation study dubbed this tactic “the firehose of falsehood.” The objective, it concluded, was to sow confusion and destroy trust, making people more likely to believe information shared by social connections than by experts.
Not everyone is sure the situation is as dire as Marcus suggests—at least not yet. Chris Meserole, a fellow at the Brookings Institution who specializes in the impact of A.I. and emerging technologies, says recent presidential elections have already witnessed such high levels of human-written misinformation that he isn’t sure that the new A.I. language models will make a noticeable difference. “I don’t think this will completely change the game and 2024 will look significantly different than 2020 or 2016,” he says.
Meserole also doesn’t think video deepfake technology is good enough yet to play a big role in 2024 (though he says that could change in 2028). What does worry Meserole today is voice clones. He could easily imagine an audio clip surfacing at a key moment in an election, purporting to be a recording of a candidate saying something scandalous in a private meeting. Those present in the meeting might deny the clip’s veracity, but it would be difficult for anyone to know for sure.
Studies have come to conflicting conclusions on whether false narratives persuade anyone or only reinforce existing beliefs, says Sandra Wachter, a professor of technology and regulation at the Oxford Internet Institute. But in a close election, even such marginal effects could be decisive.
Faced with the threat of machine-generated fake news, some believe A.I. may itself offer the best defense. In Spain, a company called Newtral that specializes in factchecking claims made by politicians is experimenting with large language models similar to those that power ChatGPT. While these models can’t actually verify facts, they can make humans better at debunking lies, says Newtral chief technology officer Ruben Miguez Perez. The technology can flag when a piece of content is making a factual claim worth checking, and it can detect other content promoting the same narrative, a process called “claim matching.” By pairing large language models with other machine learning software, Miguez Perez says it’s also possible to assess the likelihood of something being misinformation based on the sentiments expressed in the content. Using these methods, Newtral has cut the time it takes to identify statements worth fact-checking by 70% to 80%, he says.
The large social media platforms, such as Meta and Google’s YouTube, have been working on A.I. systems that do similar things. In the run-up to the 2020 U.S. presidential election, Facebook parent company Meta says it displayed warnings on more than 180 million pieces of content that were debunked by third-party fact-checkers. Still, plenty of misinformation slips through. Memes, which rely on both images and text to convey a point, are particularly tricky for A.I. models to catch. And while Meta says its systems have only gotten better since the 2020 election, the people promoting false narratives are continually devising new variations that A.I. models haven’t seen before.
What might make some difference, Marcus says, is sensible regulation: Those creating large language models should be required to create “digital watermarks” that make it easier for other algorithms to identify A.I.-created content. OpenAI, ChatGPT’s creator, has talked about this kind of watermarking, but has yet to implement it. Meanwhile, it has released free A.I.-content detection software, but it works only in about a third of cases. Marcus also says Congress should make it illegal to manufacture and distribute misinformation at scale. While First Amendment advocates might object, he says the framers of the Constitution never imagined technology that could produce infinite reams of convincing lies at the press of a button.
Then again, the late 18th century, when the U.S. was founded, was a golden era of misinformation as well, with anonymous pamphlets and partisan newspapers peddling scurrilous tales about opposing politicians and parties. Democracy survived then, notes Oxford’s Wachter. So perhaps it will this time too. But it could be a campaign unlike any we’ve ever witnessed before.