大眾媒體一直在警告我們,通過使用最新的跟蹤和人工智能技術,那些令人厭惡的營銷人員以及其他不良動機者獲得了預測甚至左右人們選擇的能力。
例如,Netflix 2019年的紀錄片《隱私大盜》(The Great Hack)講述了一個案例:數據分析公司Cambridge Analytica通過搜刮社交媒體信息來獲取有關個人想法的深度洞見。Netflix認為,該公司利用這些洞見可以設計有著明確目標的廣告,繼而操控2016年美國總統選舉向有利于唐納德?特朗普的方向發展。知名科技投資者羅杰?麥克納米在討論該紀錄片中所描述的事件時斷言,科技公司“都有一個數據詛咒人偶,它以數字的形式完整再現了人們的生活。借助這個人偶,這些公司能夠左右人們的行為。”
同樣,哈佛大學的心理學家肖珊娜?祖波夫最近發出了有關數字營銷人員的警告:“他們的目的不僅僅是為了了解你的行為,同時還會塑造行為,從而將預測轉變為必然性……如今,他們的目標是讓消費者成為自動化工具。”
很明顯,這種壞人會做壞事而且擅長做壞事的理念往往會讓公眾聯想到陰謀論,而且也符合公眾對陰謀論的認知。然而,我和斯坦福大學的營銷學教授伊塔馬?西蒙森最近在《消費者心理評論》(Consumer Psychology Review)發表的文章中指出,當我們更進一步研究這個問題時,我們發現上述指控過于夸張。
毫無疑問的是,通過人工智能(基本上是機器學習方法)獲得的進步讓諸多領域發生了革命性的變化,包括圖像識別、語言翻譯等等。然而,預測人類的選擇(以及人類的普通行為)與人工智能擅長的那些任務有很大的差異。人們對特定產品和屬性的喜好并非是可以預測的現實存在,它往往形成于做出決定的過程中,這種喜好有別于人工智能其他任務的目標。
具體來說,盡管人們可能會有普適的產品喜好(例如獨特性、便于使用、質量、喜愛的顏色),但對于特定產品來說,或者人們在產品特性之間進行取舍時,這種喜好并非是確切的,難以被精確定義。
例如,人們不大可能在購買吐司機之前就對某個型號或吐司機的參數存在具體的喜好。同樣,人們也不大可能對于自己是否愿意花更多的錢購買一個更有吸引力的吐司機有一個明確的概念,除非他們正在決定是否要購買。
這一現象在當前的消費信息環境中尤為普遍,消費者會在首次做出決定時,或即將做出決定之前,越發頻繁地遭遇影響其選擇的眾多決定性因素(例如專家和用戶評論、產品推薦、新選項),因此我們無法對其提前預測。例如,在購物過程中,一名消費者可能會看到產品的評論,重點介紹某個看似不怎么重要的特色能夠給消費者帶來的福利,但消費者此前從未考慮過這個因素。然而,這個介紹可能會對消費者的選擇帶來重大影響。這類恰逢其時的信息影響讓選擇預測的難度變得越來越大,而不是越來越小。
誠然,在這些案例中,消費者對于特定產品或屬性的喜好并不強烈、精確和穩定。例如,一些人每天早上更愿意買一杯拿鐵。在這種場景下,進行預測相對來說比較容易,而且對于數據或方法的要求也不是很高。
同樣,在部分案例中,某些變量可以預測出不同消費群體存在的不同喜好。例如,相對于購買PlayStation的消費者,購買Xbox的消費者對Xbox游戲廣告的接受度可能更高。在這個范圍內,隨著我們當前對人類行為(例如購買、“喜好”、訪問等)跟蹤的越多,此類預測的難度也就越小。
然而,即便擁有廣泛的目標消費群體數據,預測誰必然會購買某種產品的能力依然很低。例如在最近Facebook舉行的活動中,數億用戶收到了個性化(基于其在Facebook的歷史喜好)的美容產品廣告,在觀看廣告的人群中,購買該產品的人數比例平均只有萬分之一點五左右。
的確,這個結果要比收看非個性化廣告然后購買產品的人群比例高出約50%。換句話說,個性化的推送會讓人們在看過廣告后購買廣告產品的概率從約萬分之一升至萬分之一點五。從經濟角度而言,成功率的上述變化可能難能可貴(取決于廣告的成本以及產品的利潤率)。然而,這與擁有能夠操控消費者或實現其“自動化”的“數據詛咒玩偶”還相距甚遠。
在其他環境下,使用異常復雜的機器學習(深度學習)方法在改善人類選擇預測方面并沒有比使用基本的數據統計法好多少。例如,最近的研究發現,與使用簡單的模型相比,使用更加復雜的模型在改善信用卡選擇預測能力方面收效甚微,如果考慮成本的話,后者基本上是在浪費精力。
消費者喜好預測能力有限的另一個案例在于,我們不妨看看(缺乏)推薦引擎取得的進步,例如Netflix或亞馬遜(Amazon)根據觀眾觀看或購買習慣引導觀眾查看新節目或產品的引擎。最近發表的兩篇評估報告認為,大多數通過愈發復雜的方法實現的所謂預測精準度改善都是“莫須有的進展”。他們發現,簡單的方法所發揮的作用往往與更加復雜的方法沒有什么區別,其中一篇報告總結說:“盡管模型的計算復雜度在不斷增加,但進步似乎依然很有限……”
對于消費者和決策者來說,有限的預測能力以及對個人選擇有限的影響在某種程度上應該讓人感到欣慰。另一方面,在當前的信息環境下,消費者和決策者在構建其喜好并做出選擇之前,有必要對評論操縱以及他們日漸依賴的其他信息保持警惕。
換句話說,我們不用太擔心營銷人員會知道我們到底想要什么(或者通過按哪個按鈕來實現操控我們的目的),而且應該去關注自己在做出選擇時所愈發依賴的信息的完整性。(財富中文網)
大衛?蓋爾是伊利諾伊大學芝加哥分校的營銷學教授。
譯者:馮豐
審校:夏林
大眾媒體一直在警告我們,通過使用最新的跟蹤和人工智能技術,那些令人厭惡的營銷人員以及其他不良動機者獲得了預測甚至左右人們選擇的能力。
例如,Netflix 2019年的紀錄片《隱私大盜》(The Great Hack)講述了一個案例:數據分析公司Cambridge Analytica通過搜刮社交媒體信息來獲取有關個人想法的深度洞見。Netflix認為,該公司利用這些洞見可以設計有著明確目標的廣告,繼而操控2016年美國總統選舉向有利于唐納德?特朗普的方向發展。知名科技投資者羅杰?麥克納米在討論該紀錄片中所描述的事件時斷言,科技公司“都有一個數據詛咒人偶,它以數字的形式完整再現了人們的生活。借助這個人偶,這些公司能夠左右人們的行為。”
同樣,哈佛大學的心理學家肖珊娜?祖波夫最近發出了有關數字營銷人員的警告:“他們的目的不僅僅是為了了解你的行為,同時還會塑造行為,從而將預測轉變為必然性……如今,他們的目標是讓消費者成為自動化工具。”
很明顯,這種壞人會做壞事而且擅長做壞事的理念往往會讓公眾聯想到陰謀論,而且也符合公眾對陰謀論的認知。然而,我和斯坦福大學的營銷學教授伊塔馬?西蒙森最近在《消費者心理評論》(Consumer Psychology Review)發表的文章中指出,當我們更進一步研究這個問題時,我們發現上述指控過于夸張。
毫無疑問的是,通過人工智能(基本上是機器學習方法)獲得的進步讓諸多領域發生了革命性的變化,包括圖像識別、語言翻譯等等。然而,預測人類的選擇(以及人類的普通行為)與人工智能擅長的那些任務有很大的差異。人們對特定產品和屬性的喜好并非是可以預測的現實存在,它往往形成于做出決定的過程中,這種喜好有別于人工智能其他任務的目標。
具體來說,盡管人們可能會有普適的產品喜好(例如獨特性、便于使用、質量、喜愛的顏色),但對于特定產品來說,或者人們在產品特性之間進行取舍時,這種喜好并非是確切的,難以被精確定義。
例如,人們不大可能在購買吐司機之前就對某個型號或吐司機的參數存在具體的喜好。同樣,人們也不大可能對于自己是否愿意花更多的錢購買一個更有吸引力的吐司機有一個明確的概念,除非他們正在決定是否要購買。
這一現象在當前的消費信息環境中尤為普遍,消費者會在首次做出決定時,或即將做出決定之前,越發頻繁地遭遇影響其選擇的眾多決定性因素(例如專家和用戶評論、產品推薦、新選項),因此我們無法對其提前預測。例如,在購物過程中,一名消費者可能會看到產品的評論,重點介紹某個看似不怎么重要的特色能夠給消費者帶來的福利,但消費者此前從未考慮過這個因素。然而,這個介紹可能會對消費者的選擇帶來重大影響。這類恰逢其時的信息影響讓選擇預測的難度變得越來越大,而不是越來越小。
誠然,在這些案例中,消費者對于特定產品或屬性的喜好并不強烈、精確和穩定。例如,一些人每天早上更愿意買一杯拿鐵。在這種場景下,進行預測相對來說比較容易,而且對于數據或方法的要求也不是很高。
同樣,在部分案例中,某些變量可以預測出不同消費群體存在的不同喜好。例如,相對于購買PlayStation的消費者,購買Xbox的消費者對Xbox游戲廣告的接受度可能更高。在這個范圍內,隨著我們當前對人類行為(例如購買、“喜好”、訪問等)跟蹤的越多,此類預測的難度也就越小。
然而,即便擁有廣泛的目標消費群體數據,預測誰必然會購買某種產品的能力依然很低。例如在最近Facebook舉行的活動中,數億用戶收到了個性化(基于其在Facebook的歷史喜好)的美容產品廣告,在觀看廣告的人群中,購買該產品的人數比例平均只有萬分之一點五左右。
的確,這個結果要比收看非個性化廣告然后購買產品的人群比例高出約50%。換句話說,個性化的推送會讓人們在看過廣告后購買廣告產品的概率從約萬分之一升至萬分之一點五。從經濟角度而言,成功率的上述變化可能難能可貴(取決于廣告的成本以及產品的利潤率)。然而,這與擁有能夠操控消費者或實現其“自動化”的“數據詛咒玩偶”還相距甚遠。
在其他環境下,使用異常復雜的機器學習(深度學習)方法在改善人類選擇預測方面并沒有比使用基本的數據統計法好多少。例如,最近的研究發現,與使用簡單的模型相比,使用更加復雜的模型在改善信用卡選擇預測能力方面收效甚微,如果考慮成本的話,后者基本上是在浪費精力。
消費者喜好預測能力有限的另一個案例在于,我們不妨看看(缺乏)推薦引擎取得的進步,例如Netflix或亞馬遜(Amazon)根據觀眾觀看或購買習慣引導觀眾查看新節目或產品的引擎。最近發表的兩篇評估報告認為,大多數通過愈發復雜的方法實現的所謂預測精準度改善都是“莫須有的進展”。他們發現,簡單的方法所發揮的作用往往與更加復雜的方法沒有什么區別,其中一篇報告總結說:“盡管模型的計算復雜度在不斷增加,但進步似乎依然很有限……”
對于消費者和決策者來說,有限的預測能力以及對個人選擇有限的影響在某種程度上應該讓人感到欣慰。另一方面,在當前的信息環境下,消費者和決策者在構建其喜好并做出選擇之前,有必要對評論操縱以及他們日漸依賴的其他信息保持警惕。
換句話說,我們不用太擔心營銷人員會知道我們到底想要什么(或者通過按哪個按鈕來實現操控我們的目的),而且應該去關注自己在做出選擇時所愈發依賴的信息的完整性。(財富中文網)
大衛?蓋爾是伊利諾伊大學芝加哥分校的營銷學教授。
譯者:馮豐
審校:夏林
Popular media has been warning us about the ability of unsavory marketers and other bad actors to predict and even control our choices using the latest in tracking and artificial intelligence technologies.
In the 2019 Netflix documentary The Great Hack, for instance, the case is made that the data analytics firm Cambridge Analytica scraped social media to gain deep insights into individuals’ psyches. Using these insights, the filmmakers argue, that firm was able to design carefully targeted ads to manipulate the 2016 U.S. Presidential election in favor of Donald Trump. In discussing the events depicted in the film, the well-known technology investor Roger McNamee averred that technology companies “have a data voodoo doll, which is a complete digital representation of our lives. With it, they can manipulate our behavior.”
Likewise, the Harvard psychologist Shoshana Zuboff recently warned of digital marketers, “The idea is not only to know our behavior but also to shape it in ways that can turn predictions into guarantees… the goal now is to automate us.”
Clearly, the idea that bad people do bad things and are adept at it resonates and is consistent with the public’s inclination to conspiracy theories. But as Stanford marketing professor Itamar Simonson and I discuss in a recent articlein Consumer Psychology Review, a closer examination suggests that the claims are grossly exaggerated.
There is no question that advances that go under the label of A.I. (mostly machine learning methods) are enabling revolutions in many domains, including image recognition, language translation, and many others. However, predicting people’s choices (and human behavior generally) is quite unlike the tasks where A.I. shines. Unlike the targets of these other tasks, preferences for specific products and attributes do not exist to be predicted but tend to be formed at the time decisions are made.
To elaborate, while people are likely to have general product preferences (for uniqueness, for ease-of-use, for quality, for a favorite color), people usually do not have precise, well-defined preferences for specific products, or for how they would trade off one product attribute for another.
For example, people are unlikely to have a preference in advance of buying a toaster for a particular model or configuration of toaster. Likewise, they are unlikely to have a clear preference for how much extra they would be willing to pay for a somewhat more attractive toaster, until they are in the process of making a purchase decision. That is, such preferences do not exist to be predicted but are “constructed” in the process of making a decision on the basis of many, largely unpredictable factors.
This is particularly the case in the current consumer information environment, where many of the key determinants of choice (e.g., expert and user reviews, product recommendations, new options) are increasingly encountered by the consumer for the first time at or near the time when a decision is being made, and therefore cannot be anticipated ahead of time. For example, in the process of shopping, a consumer might encounter a product review that highlights the benefits of a seemingly insignificant feature the consumer previously had not considered, and this might substantially affect the consumer’s choice. The influence of such just-in-time information makes our choices increasingly more difficult, not easier, to predict.
To be sure, in some cases consumers do have strong, precise, stable preferences for particular products or attributes. For instance, some people prefer to buy a latte every morning. In such a case making a prediction is relatively easy, and requires little sophistication in data or methods.
Likewise, in some cases, certain variables will predict differences in preferences between consumer groups. For instance, consumers who bought an Xbox are likely to be much more receptive to ads for Xbox games than consumers who bought a PlayStation. Insofar as more of what we do (purchases, “likes,” visits, etc.) is tracked today, more such “easy” predictions can be made.
However, even with extensive consumer data for targeting, the ability to predict who is likely to buy a product in an absolute sense remains low. In a recent Facebook campaign, for instance, where millions of users were shown ads for a beauty product that were targeted to their personalities (based on their history of Facebook likes), on average only about 1.5 in 10,000 people that viewed the ads bought the product.
Granted, this result was about 50% higher than for people who saw the ad but were not targeted based on their personality. In other words, targeting based on personality increased the likelihood that someone who saw an ad would buy the advertised product from about 1 in 10,000 to about 1.5 in 10,000. Such a change in the success rate might be economically meaningful (depending on the cost of the ads and the product’s profit margins), but it is a far cry from having a “data voodoo doll” to manipulate consumers or to “automate” them.
In other contexts, the use of highly sophisticated machine learning (deep learning) methods has shown limited ability to improve predictions of people’s choices over basic statistical methods. For instance, recent research found that the use of more sophisticated models yielded only very slight improvements over a simple model in the ability to predict people’s credit card choices– so slight that, given the cost involved, it was likely a waste of effort.
As another example of the limited ability to predict consumer preferences, consider (the lack of) advances in recommendation engines, like those used by Netflix or Amazon to steer viewers toward new shows or products based on what they’ve already watched or purchased. Two recent reviews referred to most of the claimed gains in predictive accuracy from increasingly sophisticated methods as “phantom progress.” Simple methods, they found, tended to perform as well as more sophisticated ones, with one review concluding that, “progress seems to be still limited… despite the increasing computational complexity of the models.”
For consumers and policymakers, the limited ability to predict and thereby influence individual choices should be somewhat comforting. On the other hand, consumers and policymakers need to be vigilant regarding the manipulation of the reviews and other information that consumers increasingly depend on in the current information environment to construct their preferences and make choices.
In other words, we should be less concerned that marketers will know exactly what we want (or exactly what buttons to push to manipulate us) and more concerned about the integrity of the information we increasingly rely on to make choices.
David Gal is professor of marketing at the University of Illinois at Chicago.