精品国产_亚洲人成在线高清,国产精品成人久久久久,国语自产偷拍精品视频偷拍

首頁 500強 活動 榜單 商業 科技 領導力 專題 品牌中心
雜志訂閱

提前48小時預警,谷歌利用AI技術預測東南亞洪水

Jeremy Kahn
2020-09-04

谷歌通過修改該系統采用的技術,可以在洪水爆發之前最多48小時提供詳細預警。

文本設置
小號
默認
大號
Plus(0條)

谷歌(Google)在9月1日發布的一篇博文中表示,公司完善并擴大了利用人工智能軟件為南亞地區預測洪水的項目,該項目能夠幫助南亞國家政府更早、更準確地提供預警,從而拯救更多生命。

目前,該項目覆蓋了印度面臨洪水風險的超過2億人口及其鄰國孟加拉國的大量人口。孟加拉國每年平均有5,000人在洪水中喪生。

谷歌通過修改該系統采用的技術,將目前的預警時間提前一倍,可以在洪水爆發之前最多48小時提供詳細預警。

洪水每年在全世界范圍內會影響大約9,500萬至2.4億人,造成6,000人至8,000人死亡,經濟損失高達330億美元。氣候變化產生更猛烈的暴風雨,導致冰川融化,這將使洪水頻發,并且變得更加嚴重,預計這些數據也會隨之繼續上升。

谷歌在2017年啟動“洪水預報倡議”(Flood Forecasting Initiative),涵蓋了印度比哈爾邦首府巴特那的周邊地區,這里一直是印度最容易洪水泛濫的地區。2019年,比哈爾邦遭遇了25年來最嚴重的洪水,造成130多人死亡。

作為來自硅谷的科技行業巨頭,谷歌一直在與印度政府下屬的中央水務委員會(Central Water Commission)合作改善洪水預報。另外,谷歌還與該委員會合作,改進了向民眾發送預警信息的方式。

谷歌一直在逐步擴大該項目的范圍,該公司表示,到目前為止,已經在印度幫助發送了超過2,700萬條洪水預警。

谷歌的高級軟件工程師塞拉?尼瓦是洪水預報項目的負責人。他表示,改進印度的洪水預報,需要與印度政府合作完善水位數據的收集方式。這樣便可以減少過去妨礙洪水預報的水位信息讀取錯誤和延誤等問題。

雖然某些問題是印度及其他發展中國家在洪水監測方面存在的特殊問題,但谷歌在印度率先嘗試的一些技術可能會改變全世界的洪水預報。

尼瓦表示,以前最先進的洪水預報所采用的水文模型,基本上都是基于當地的地形圖和從物理學中得出的概念原則。他解釋說,每一個流域都有各自的特點,因此幾乎不可能創建一個在不同江河流域都適用的模型。

但谷歌采用的方法主要基于人工智能,由軟件對世界不同地區的多個不同江河流域的歷史洪水數據進行分析,然后通過自我學習對幾乎所有江河流域做出準確預測。

尼瓦說:“在水文學中有一種觀點認為你不可能對不同江河流域一概而論,這種觀點被人們奉為圭臬。但事實證明,這種觀點并不正確。”他說谷歌基于人工智能的預報模型,在接受訓練之前從未遇到過的流域預測洪水的效果,勝過了專為該流域設計的傳統水文模型。

當然,得出預測結果是一回事,要解決如何根據預測結果向人們提供預警又是另一回事。人們對于政府發布的洪水預警會作何反應?哪種預警的效果最佳?到目前為止,對于這些問題的研究一直有所欠缺。

谷歌表示,其目前正在與耶魯大學(Yale University)的研究人員合作,嘗試找到這些問題的答案。耶魯大學和谷歌在印度的初步研究顯示,民眾收到預警后采取自我保護措施的幾率增加了一倍,收到洪水預警的民眾有65%采取了一定的保護措施。

但谷歌仍然在努力提高這些數據。谷歌表示,公司今年全面改進了其洪水預警,將以9種本地語言和可視化的形式提供信息,幫助人們更直觀地理解預警內容。

另外,谷歌將根據其預測向人們提供更多信息,比如洪水在某個特定時間抵達某個村莊或區域時可能達到的水位高度。(財富中文網)

本文經過更新,以準確描述谷歌為改善洪水預測所用的數據質量采用的方法。谷歌在其洪水預報倡議中沒有使用電子傳感器,而是依靠其他方法提高數據的及時性和準確性。

譯者:Biz

谷歌(Google)在9月1日發布的一篇博文中表示,公司完善并擴大了利用人工智能軟件為南亞地區預測洪水的項目,該項目能夠幫助南亞國家政府更早、更準確地提供預警,從而拯救更多生命。

目前,該項目覆蓋了印度面臨洪水風險的超過2億人口及其鄰國孟加拉國的大量人口。孟加拉國每年平均有5,000人在洪水中喪生。

谷歌通過修改該系統采用的技術,將目前的預警時間提前一倍,可以在洪水爆發之前最多48小時提供詳細預警。

洪水每年在全世界范圍內會影響大約9,500萬至2.4億人,造成6,000人至8,000人死亡,經濟損失高達330億美元。氣候變化產生更猛烈的暴風雨,導致冰川融化,這將使洪水頻發,并且變得更加嚴重,預計這些數據也會隨之繼續上升。

谷歌在2017年啟動“洪水預報倡議”(Flood Forecasting Initiative),涵蓋了印度比哈爾邦首府巴特那的周邊地區,這里一直是印度最容易洪水泛濫的地區。2019年,比哈爾邦遭遇了25年來最嚴重的洪水,造成130多人死亡。

作為來自硅谷的科技行業巨頭,谷歌一直在與印度政府下屬的中央水務委員會(Central Water Commission)合作改善洪水預報。另外,谷歌還與該委員會合作,改進了向民眾發送預警信息的方式。

谷歌一直在逐步擴大該項目的范圍,該公司表示,到目前為止,已經在印度幫助發送了超過2,700萬條洪水預警。

谷歌的高級軟件工程師塞拉?尼瓦是洪水預報項目的負責人。他表示,改進印度的洪水預報,需要與印度政府合作完善水位數據的收集方式。這樣便可以減少過去妨礙洪水預報的水位信息讀取錯誤和延誤等問題。

雖然某些問題是印度及其他發展中國家在洪水監測方面存在的特殊問題,但谷歌在印度率先嘗試的一些技術可能會改變全世界的洪水預報。

尼瓦表示,以前最先進的洪水預報所采用的水文模型,基本上都是基于當地的地形圖和從物理學中得出的概念原則。他解釋說,每一個流域都有各自的特點,因此幾乎不可能創建一個在不同江河流域都適用的模型。

但谷歌采用的方法主要基于人工智能,由軟件對世界不同地區的多個不同江河流域的歷史洪水數據進行分析,然后通過自我學習對幾乎所有江河流域做出準確預測。

尼瓦說:“在水文學中有一種觀點認為你不可能對不同江河流域一概而論,這種觀點被人們奉為圭臬。但事實證明,這種觀點并不正確。”他說谷歌基于人工智能的預報模型,在接受訓練之前從未遇到過的流域預測洪水的效果,勝過了專為該流域設計的傳統水文模型。

當然,得出預測結果是一回事,要解決如何根據預測結果向人們提供預警又是另一回事。人們對于政府發布的洪水預警會作何反應?哪種預警的效果最佳?到目前為止,對于這些問題的研究一直有所欠缺。

谷歌表示,其目前正在與耶魯大學(Yale University)的研究人員合作,嘗試找到這些問題的答案。耶魯大學和谷歌在印度的初步研究顯示,民眾收到預警后采取自我保護措施的幾率增加了一倍,收到洪水預警的民眾有65%采取了一定的保護措施。

但谷歌仍然在努力提高這些數據。谷歌表示,公司今年全面改進了其洪水預警,將以9種本地語言和可視化的形式提供信息,幫助人們更直觀地理解預警內容。

另外,谷歌將根據其預測向人們提供更多信息,比如洪水在某個特定時間抵達某個村莊或區域時可能達到的水位高度。(財富中文網)

本文經過更新,以準確描述谷歌為改善洪水預測所用的數據質量采用的方法。谷歌在其洪水預報倡議中沒有使用電子傳感器,而是依靠其他方法提高數據的及時性和準確性。

譯者:Biz

Google has improved and expanded a program that uses artificial intelligence software to forecast floods in South Asia, enabling governments to issue earlier and more accurate warnings that can potentially save lives, the company said in a blog post on September 1.

The system now covers more than 200 million people at risk for flooding across India as well as large portions of neighboring Bangladesh, a country where an average of 5,000 people each year are killed in floods.

Changes in the technology underpinning the system have allowed Google to double the warning time it is now providing, giving people detailed alerts up to 48 hours before flooding occurs.

Floods affect an estimated 95 million to 240 million people worldwide annually, killing between 6,000 and 8,000 of them and causing up to $33 billion in economic damage. Those figures are expected to rise as climate change makes flooding, owing to stronger rainstorms and glacial melting, more frequent and severe.

Google began its Flood Forecasting Initiative in 2017, covering the area around Patna, the capital of the Indian state of Bihar, historically the country’s most flood-prone region. In 2019, Bihar experienced some of the worst floods in a quarter-century, which killed more than 130 people.

The Silicon Valley technology giant has worked with the Indian government’s Central Water Commission to improve the forecasts it relies on. It has also worked with the agency to improve the way it sends alerts to citizens warning them of danger.

Since then Google has steadily expanded the program, and the company says it has helped send more than 27 million flood alerts in India to date.

Sella Nevo, a senior software engineer at Google who leads the flood forecasting project, said part of its improvement in forecasting in India has involved working with the Indian government to improve how it collects data on water levels. This has reduced both erroneous water-level readings and delays that hampered forecasting in the past.

While some of these problems are specific to flood monitoring in India and other developing nations, some of the techniques Google has pioneered in India could change flood forecasting worldwide.

Nevo said even state-of-the-art flood forecasting had previously relied on hydrologic models that were based largely on maps of local topography and conceptual principles derived from physics. Each watershed was thought to be unique—leaving little ability to create a model that would work equally well across different river basins, Nevo explained.

Google, instead, took an approach largely based on A.I., in which software analyzes historical flood data taken from several different river basins in different parts of the world and trains itself to make accurate predictions for almost any river basin.

“One assumption that was presumed to be true in hydrology is that you cannot generalize across water basins,” Nevo said. “Well, it’s not true, as it turns out.” He said Google’s A.I.-based forecasting model has performed better on watersheds it has never encountered before in training than classical hydrologic models that were designed specifically for that river basin.

Of course, issuing these forecasts is one thing. Figuring out how to alert people based on them is another. And so far, exactly how people react to government-issued flood warnings and what kinds of alerts work best are topics that have been understudied.

Google said it is currently working with researchers from Yale University to try to answer some of these questions. Preliminary work by Yale and Google in India has shown that receiving an alert doubles the chance that someone will take action to protect themselves, with about 65% of all people who receive flood warnings taking some protective steps.

But the company has been working to improve these figures. This year, it said it overhauled its alerts to provide information in nine different local languages as well as in a visual formats, which can help people intuitively grasp the warning.

It is also providing people with more information about exactly how far the water is likely to rise in their specific village or area at specific times, based on the Google forecast.

This story has been updated to correctly describe the method Google has used to improve the quality of data fed into its flood forecasts. It has not used electronic sensors as part of the initiative and instead has relied on other ways to improve the timeliness and accuracy of the data.

財富中文網所刊載內容之知識產權為財富媒體知識產權有限公司及/或相關權利人專屬所有或持有。未經許可,禁止進行轉載、摘編、復制及建立鏡像等任何使用。
0條Plus
精彩評論
評論

撰寫或查看更多評論

請打開財富Plus APP

前往打開

            主站蜘蛛池模板: 绍兴市| 福鼎市| 曲麻莱县| 太和县| 徐汇区| 油尖旺区| 和顺县| 姚安县| 县级市| 金堂县| 怀安县| 诏安县| 青岛市| 化州市| 临猗县| 防城港市| 通山县| 镇雄县| 衡东县| 彰化县| 二连浩特市| 汶上县| 那曲县| 西充县| 隆化县| 沙田区| 伊川县| 金溪县| 湘潭市| 怀安县| 江阴市| 达尔| 清水河县| 清流县| 泸西县| 武穴市| 博客| 宣化县| 桐乡市| 赣州市| 宾川县|