盡管生成式人工智能近年來取得了顯著進步,但其應用仍然主要局限于那些歷來在部署新興技術上占據先機的大型企業。但隨著生成式人工智能技術的持續演進,最適合從中獲取價值的企業類型也在不斷變化。越來越多的中型企業憑借在資源和敏捷性方面取得的巧妙平衡,正加速推進生成式人工智能的應用步伐,推動產生有意義的成果,并在技術成熟的過程中從中獲益。
大型企業目前在生成式人工智能的采用方面占據主導地位。波士頓咨詢公司(BCG)2024年的一項調查發現,46%的大型企業報告稱其在生成式人工智能成熟度方面處于中等至較高水平,而中型企業的這一比例僅為28%。得益于在人才招募、數據獲取以及資金籌備方面的便利條件,規模較大的企業在傳統資源密集型人工智能項目中更具優勢。
但這種優勢似乎正在減弱。倫敦商學院(LBS)、Institute of Directors和Evolution Ltd最近的研究表明,中型企業,尤其是那些雄心勃勃、專注于增長的企業,比如那些獲得私募股權支持的企業,在克服采用障礙方面處于有利地位。與大型企業相比,中型企業更加靈活,這成為推動生成式人工智能日益普及的一個關鍵因素,也使得這些企業成為利用該技術并釋放其潛力的理想候選者。
總體而言,雖然這些公司仍處于落后狀態,但它們似乎已蓄勢待發,準備迎頭趕上。牛津經濟研究院(Oxford Economics)的研究發現,在接受調查的中型企業中,只有四分之一在2023年采用了人工智能,但51%的企業計劃在2024年采用人工智能;采用該技術的企業期望人工智能能改善它們的前景,特別是在新產品和服務(43%)以及營銷和銷售(48%)方面。
組織規模:一把雙刃劍
直到最近,從生成式人工智能中獲益最多的還是規模(非常)大的公司,因為規模優勢足以克服因規模擴大而帶來的組織復雜性挑戰。然而,隨著技術的發展,大型企業發現自己難以迅速適應。多層級的管理架構、根深蒂固的流程和部門間的隔閡會減緩像生成式人工智能這樣快速發展的技術的采用速度。
在大型企業中,生成式人工智能的實施可能會遭遇“千個項目試點失敗”,即各個團隊或職能部門開發概念驗證產品和工具,但由于企業復雜性和缺乏明確的治理,無法將其規模化。因此,盡管在數字化轉型方面投入巨大,大型企業往往難以充分發揮新工具的潛力。
相比之下,中型企業則可以從更精簡的組織結構中受益,從而實現更為迅速的決策和執行,前提是具備恰當的領導力和治理機制。當它們的敏捷性與正確的戰略相結合時,就能更迅速地適應技術領域的新動態,并且更輕松地將生成式人工智能投入運營。(這里所說的中型企業指的是收入在5000萬美元到10億美元之間的公司,盡管具體的定義因國家而異,但中型企業廣義上指的是規模相對較小、運營相對簡單且能保持敏捷性的企業。)
雖然體量和規模優勢曾在獲得專業人才及構建資本密集型基礎設施方面發揮了決定性優勢,但生成式人工智能技術的發展,尤其是作為服務的生成式人工智能的發展、精簡平臺的出現以及可定制模型的增長,正在為中型企業和大型企業創造一個更加公平的競爭環境。
例如,生成式人工智能供應商通過提供模型和基礎設施即服務,極大地降低了對前期投資和廣泛信息技術能力的需求。像谷歌Vertex AI和Snowflake這樣的精簡平臺解決方案也簡化了人工智能生態系統,提供集成化的數據管理、模型定制和部署工具,所有這些都降低了技術門檻,并加速了價值實現的時間進程。
與此同時,通過檢索增強生成(RAG)等技術實現的可定制模型的進步,使中型企業能夠有效地利用其專有數據,而無需擁有一支龐大的內部數據科學家團隊。構建傳統人工智能所需的大部分編碼工作已被自然語言提示工程所取代,從而能夠創建適合公司內容、專業知識和工作流程的生成式人工智能驅動工具。
此外,包括企業資源計劃(ERP)和客戶關系管理系統(CRM)在內的現有軟件平臺的更新融入了人工智能功能,從而可以輕松訪問現有技術堆棧上的人工智能功能。鑒于中型企業通常擁有復雜程度較低且定制化程度不高的軟件實例,因此它們能夠比大型企業更快、更輕松地集成這些新功能。
從采用生成式人工智能到創造價值
除了采用生成式人工智能之外,中型企業在利用其創造價值方面也占據了得天獨厚的優勢,因為這可能助力它們突破那些常常制約其發展的運營限制。中型企業往往難以吸引數據科學家等專業人才,而且規模也不足以使其聘請全職人員變得經濟可行。生成式人工智能工具能夠拓展現有員工的能力。正如波士頓咨詢公司最近的一項實驗所證明的那樣,在該實驗中,每位管理顧問都被要求完成三項超出其核心咨詢能力的基本數據科學任務:數據清理、預測分析和統計理解。
使用生成式人工智能來執行任務,顧問們的能力立即得到了提升,超出了他們現有的能力范圍。相較于未采用生成式人工智能的參與者,這些借助了生成式人工智能的參與者的能力提高了13到49個百分點,與數據科學家的基準水平相差12到17個百分點。針對特定職能或角色的工具正在進入市場,使公司能夠進一步擴展現有員工的能力。例如,Sisense使公司無需編寫代碼即可構建語義數據模型,用戶可以通過自然語言查詢進行查詢,從而使管理人員能夠將數據驅動的洞察納入決策,而無需數據分析師或數據科學家的協助。
在規模較小的企業中,另一個常見的限制因素是缺乏足夠的專有數據來實現差異化。倫敦商學院、Institute of Directors和Evolution Ltd.近期開展的一項研究發現,年收入在1000萬至5000萬英鎊之間的小型公司中,僅有56%的公司表示專有知識對其業務具有一定的乃至至關重要的作用,而在年收入超過5000萬英鎊的中型公司中,這一比例為72%。相比之下,大型企業早已利用傳統的人工智能從專有數據中挖掘價值,并且在數據清理和整合方面進行了投資。
然而,中型企業通常擁有大量非結構化數據,卻難以從中提取價值。例如,一家中型企業可能會為客服代表配備了詳盡的產品說明手冊與故障排查指南,以及真實客戶支持電話的通話記錄。借助生成式人工智能,這類企業如今無需聘請數據科學家團隊,就能利用公司數據建立新關聯,并實時創建和傳播高度定制化的組織知識,從而釋放洞察力。其結果是企業能夠以更低的成本改善客戶服務——這是這些企業過去因資源、能力和基礎設施局限而無法做到的。
由私募股權公司支持的中型企業在運營層面擁有額外的優勢——戰略協同、財務和人力資本以及專注的執行力——這使它們成為采用生成式人工智能的首選對象。私募股權公司為其投資組合公司設定了明確的目標和時間表,專注于在特定投資期限(通常為五年)內創造價值,這使得它們能夠果斷采取行動,優先考慮并實施生成式人工智能應用。獲得私募股權支持的公司還可以獲得生成式人工智能項目所需的財務和人力資本,使這些公司能夠在預期增長的情況下大力投資于領導團隊和顧問團隊建設。因此,這些企業往往更愿意基于高回報的潛力而承擔經過深思熟慮的風險。
中型企業利用生成式人工智能的策略
相較于大型企業,中型企業在采用生成式人工智能方面可能有一些結構性優勢,但這并不能保證成功。以下列舉了當前中型企業可采取的五大戰略舉措,旨在提升其成功運用生成式人工智能并實現價值創造的可能性。
1. 構建可擴展且靈活的生成式人工智能技術棧:投資可擴展的人工智能即服務平臺,這些平臺能夠隨著公司的發展而擴展,而無需大量額外投資。
2.轉向“重塑”和“發明”: 除了部署生成式人工智能來逐步改進現有流程外,還要重新思考業務模式以及如何重新設計整個功能。波士頓咨詢公司最近的一項調查發現,處于人工智能應用前沿的公司在核心業務功能中部署人工智能和生成式人工智能所獲得的價值占比高達近三分之二(62%),其余三分之一(38%)則來自更多的外圍支持功能。由此得出的啟示顯而易見:選擇能夠重新設計核心功能的深層應用程序,并優先考慮那些利用獨特、專有數據來創建護城河的應用程序。
3. 關注能與生成式人工智能相輔相成的因素,而不僅僅是技術本身:正如Evolution Ltd最近發布的一份白皮書所指出的那樣,人們對生成式人工智能感到失望的一大關鍵原因在于過于強調技術本身,而對上游(數據工程和專有數據)和下游(將生成式人工智能整合到戰略決策中并創建學習和實驗循環)的關注太少。
4. 建立清晰的治理和領導機制:要在生成式人工智能方面取得成功,公司領導層必須做出堅定承諾,構建有利于高效決策的治理結構,并優先考慮中期投資,而不僅僅是即時回報。
5. 增強員工能力:利用生成式人工智能增強員工技能,使他們能夠完成超出當前能力范圍的任務。
生成式人工智能:中型企業的“最佳時機”?
中型企業過去被認為規模太小,如今可能“恰好”適合充分利用當今的生成式人工智能。然而,要把握住這一機遇,它們需要制定明確的戰略,并密切關注生成式人工智能能夠發揮作用的領域——不只是降低成本,還要創造收入和價值。那些能夠始終專注于有效推進生成式人工智能戰略實施的企業會發現,人工智能革命并非只是行業巨頭或靈活的初創企業的專屬,而是包容性的變革浪潮,中型企業是搭乘“革命專列”的理想之選。(財富中文網)
弗朗索瓦·坎德隆(Fran?ois Candelon)是私募股權公司Seven2的合伙人,曾任波士頓咨詢公司亨德森研究所(BCG Henderson Institute)全球主管。
邁克爾·G·雅各比德斯(Michael G. Jacobides)是倫敦商學院唐納德·戈登爵士創業與創新教授,同時擔任波士頓咨詢公司亨德森研究所學術顧問和Evolution Ltd.首席顧問。
米納爾·波爾(Meenal Pore)是波士頓咨詢公司的負責人,同時也是波士頓咨詢公司亨德森研究所的代表人物。
列昂尼德·茹科夫(Leonid Zhukov)現任波士頓咨詢公司全球人工智能研究所所長,并兼任BCG.X人工智能與數據科學副總裁。
本專欄文章中所提及的部分公司是作者所在企業過去或現在的客戶。
譯者:中慧言-王芳
盡管生成式人工智能近年來取得了顯著進步,但其應用仍然主要局限于那些歷來在部署新興技術上占據先機的大型企業。但隨著生成式人工智能技術的持續演進,最適合從中獲取價值的企業類型也在不斷變化。越來越多的中型企業憑借在資源和敏捷性方面取得的巧妙平衡,正加速推進生成式人工智能的應用步伐,推動產生有意義的成果,并在技術成熟的過程中從中獲益。
大型企業目前在生成式人工智能的采用方面占據主導地位。波士頓咨詢公司(BCG)2024年的一項調查發現,46%的大型企業報告稱其在生成式人工智能成熟度方面處于中等至較高水平,而中型企業的這一比例僅為28%。得益于在人才招募、數據獲取以及資金籌備方面的便利條件,規模較大的企業在傳統資源密集型人工智能項目中更具優勢。
但這種優勢似乎正在減弱。倫敦商學院(LBS)、Institute of Directors和Evolution Ltd最近的研究表明,中型企業,尤其是那些雄心勃勃、專注于增長的企業,比如那些獲得私募股權支持的企業,在克服采用障礙方面處于有利地位。與大型企業相比,中型企業更加靈活,這成為推動生成式人工智能日益普及的一個關鍵因素,也使得這些企業成為利用該技術并釋放其潛力的理想候選者。
總體而言,雖然這些公司仍處于落后狀態,但它們似乎已蓄勢待發,準備迎頭趕上。牛津經濟研究院(Oxford Economics)的研究發現,在接受調查的中型企業中,只有四分之一在2023年采用了人工智能,但51%的企業計劃在2024年采用人工智能;采用該技術的企業期望人工智能能改善它們的前景,特別是在新產品和服務(43%)以及營銷和銷售(48%)方面。
組織規模:一把雙刃劍
直到最近,從生成式人工智能中獲益最多的還是規模(非常)大的公司,因為規模優勢足以克服因規模擴大而帶來的組織復雜性挑戰。然而,隨著技術的發展,大型企業發現自己難以迅速適應。多層級的管理架構、根深蒂固的流程和部門間的隔閡會減緩像生成式人工智能這樣快速發展的技術的采用速度。
在大型企業中,生成式人工智能的實施可能會遭遇“千個項目試點失敗”,即各個團隊或職能部門開發概念驗證產品和工具,但由于企業復雜性和缺乏明確的治理,無法將其規模化。因此,盡管在數字化轉型方面投入巨大,大型企業往往難以充分發揮新工具的潛力。
相比之下,中型企業則可以從更精簡的組織結構中受益,從而實現更為迅速的決策和執行,前提是具備恰當的領導力和治理機制。當它們的敏捷性與正確的戰略相結合時,就能更迅速地適應技術領域的新動態,并且更輕松地將生成式人工智能投入運營。(這里所說的中型企業指的是收入在5000萬美元到10億美元之間的公司,盡管具體的定義因國家而異,但中型企業廣義上指的是規模相對較小、運營相對簡單且能保持敏捷性的企業。)
雖然體量和規模優勢曾在獲得專業人才及構建資本密集型基礎設施方面發揮了決定性優勢,但生成式人工智能技術的發展,尤其是作為服務的生成式人工智能的發展、精簡平臺的出現以及可定制模型的增長,正在為中型企業和大型企業創造一個更加公平的競爭環境。
例如,生成式人工智能供應商通過提供模型和基礎設施即服務,極大地降低了對前期投資和廣泛信息技術能力的需求。像谷歌Vertex AI和Snowflake這樣的精簡平臺解決方案也簡化了人工智能生態系統,提供集成化的數據管理、模型定制和部署工具,所有這些都降低了技術門檻,并加速了價值實現的時間進程。
與此同時,通過檢索增強生成(RAG)等技術實現的可定制模型的進步,使中型企業能夠有效地利用其專有數據,而無需擁有一支龐大的內部數據科學家團隊。構建傳統人工智能所需的大部分編碼工作已被自然語言提示工程所取代,從而能夠創建適合公司內容、專業知識和工作流程的生成式人工智能驅動工具。
此外,包括企業資源計劃(ERP)和客戶關系管理系統(CRM)在內的現有軟件平臺的更新融入了人工智能功能,從而可以輕松訪問現有技術堆棧上的人工智能功能。鑒于中型企業通常擁有復雜程度較低且定制化程度不高的軟件實例,因此它們能夠比大型企業更快、更輕松地集成這些新功能。
從采用生成式人工智能到創造價值
除了采用生成式人工智能之外,中型企業在利用其創造價值方面也占據了得天獨厚的優勢,因為這可能助力它們突破那些常常制約其發展的運營限制。中型企業往往難以吸引數據科學家等專業人才,而且規模也不足以使其聘請全職人員變得經濟可行。生成式人工智能工具能夠拓展現有員工的能力。正如波士頓咨詢公司最近的一項實驗所證明的那樣,在該實驗中,每位管理顧問都被要求完成三項超出其核心咨詢能力的基本數據科學任務:數據清理、預測分析和統計理解。
使用生成式人工智能來執行任務,顧問們的能力立即得到了提升,超出了他們現有的能力范圍。相較于未采用生成式人工智能的參與者,這些借助了生成式人工智能的參與者的能力提高了13到49個百分點,與數據科學家的基準水平相差12到17個百分點。針對特定職能或角色的工具正在進入市場,使公司能夠進一步擴展現有員工的能力。例如,Sisense使公司無需編寫代碼即可構建語義數據模型,用戶可以通過自然語言查詢進行查詢,從而使管理人員能夠將數據驅動的洞察納入決策,而無需數據分析師或數據科學家的協助。
在規模較小的企業中,另一個常見的限制因素是缺乏足夠的專有數據來實現差異化。倫敦商學院、Institute of Directors和Evolution Ltd.近期開展的一項研究發現,年收入在1000萬至5000萬英鎊之間的小型公司中,僅有56%的公司表示專有知識對其業務具有一定的乃至至關重要的作用,而在年收入超過5000萬英鎊的中型公司中,這一比例為72%。相比之下,大型企業早已利用傳統的人工智能從專有數據中挖掘價值,并且在數據清理和整合方面進行了投資。
然而,中型企業通常擁有大量非結構化數據,卻難以從中提取價值。例如,一家中型企業可能會為客服代表配備了詳盡的產品說明手冊與故障排查指南,以及真實客戶支持電話的通話記錄。借助生成式人工智能,這類企業如今無需聘請數據科學家團隊,就能利用公司數據建立新關聯,并實時創建和傳播高度定制化的組織知識,從而釋放洞察力。其結果是企業能夠以更低的成本改善客戶服務——這是這些企業過去因資源、能力和基礎設施局限而無法做到的。
由私募股權公司支持的中型企業在運營層面擁有額外的優勢——戰略協同、財務和人力資本以及專注的執行力——這使它們成為采用生成式人工智能的首選對象。私募股權公司為其投資組合公司設定了明確的目標和時間表,專注于在特定投資期限(通常為五年)內創造價值,這使得它們能夠果斷采取行動,優先考慮并實施生成式人工智能應用。獲得私募股權支持的公司還可以獲得生成式人工智能項目所需的財務和人力資本,使這些公司能夠在預期增長的情況下大力投資于領導團隊和顧問團隊建設。因此,這些企業往往更愿意基于高回報的潛力而承擔經過深思熟慮的風險。
中型企業利用生成式人工智能的策略
相較于大型企業,中型企業在采用生成式人工智能方面可能有一些結構性優勢,但這并不能保證成功。以下列舉了當前中型企業可采取的五大戰略舉措,旨在提升其成功運用生成式人工智能并實現價值創造的可能性。
1. 構建可擴展且靈活的生成式人工智能技術棧:投資可擴展的人工智能即服務平臺,這些平臺能夠隨著公司的發展而擴展,而無需大量額外投資。
2.轉向“重塑”和“發明”: 除了部署生成式人工智能來逐步改進現有流程外,還要重新思考業務模式以及如何重新設計整個功能。波士頓咨詢公司最近的一項調查發現,處于人工智能應用前沿的公司在核心業務功能中部署人工智能和生成式人工智能所獲得的價值占比高達近三分之二(62%),其余三分之一(38%)則來自更多的外圍支持功能。由此得出的啟示顯而易見:選擇能夠重新設計核心功能的深層應用程序,并優先考慮那些利用獨特、專有數據來創建護城河的應用程序。
3. 關注能與生成式人工智能相輔相成的因素,而不僅僅是技術本身:正如Evolution Ltd最近發布的一份白皮書所指出的那樣,人們對生成式人工智能感到失望的一大關鍵原因在于過于強調技術本身,而對上游(數據工程和專有數據)和下游(將生成式人工智能整合到戰略決策中并創建學習和實驗循環)的關注太少。
4. 建立清晰的治理和領導機制:要在生成式人工智能方面取得成功,公司領導層必須做出堅定承諾,構建有利于高效決策的治理結構,并優先考慮中期投資,而不僅僅是即時回報。
5. 增強員工能力:利用生成式人工智能增強員工技能,使他們能夠完成超出當前能力范圍的任務。
生成式人工智能:中型企業的“最佳時機”?
中型企業過去被認為規模太小,如今可能“恰好”適合充分利用當今的生成式人工智能。然而,要把握住這一機遇,它們需要制定明確的戰略,并密切關注生成式人工智能能夠發揮作用的領域——不只是降低成本,還要創造收入和價值。那些能夠始終專注于有效推進生成式人工智能戰略實施的企業會發現,人工智能革命并非只是行業巨頭或靈活的初創企業的專屬,而是包容性的變革浪潮,中型企業是搭乘“革命專列”的理想之選。(財富中文網)
弗朗索瓦·坎德隆(Fran?ois Candelon)是私募股權公司Seven2的合伙人,曾任波士頓咨詢公司亨德森研究所(BCG Henderson Institute)全球主管。
邁克爾·G·雅各比德斯(Michael G. Jacobides)是倫敦商學院唐納德·戈登爵士創業與創新教授,同時擔任波士頓咨詢公司亨德森研究所學術顧問和Evolution Ltd.首席顧問。
米納爾·波爾(Meenal Pore)是波士頓咨詢公司的負責人,同時也是波士頓咨詢公司亨德森研究所的代表人物。
列昂尼德·茹科夫(Leonid Zhukov)現任波士頓咨詢公司全球人工智能研究所所長,并兼任BCG.X人工智能與數據科學副總裁。
本專欄文章中所提及的部分公司是作者所在企業過去或現在的客戶。
譯者:中慧言-王芳
Despite generative AI’s remarkable advances in recent years, adoption of the technology remains largely confined to the same large corporations that have historically led the way in deploying emerging technologies. But GenAI is evolving and so, too, is the company profile best suited to extract value from it. Increasingly, it is mid-sized companies that possess the right balance of resources and agility to accelerate adoption, drive meaningful outcomes, and reap the benefits of GenAI as the technology matures.
Large enterprises currently dominate GenAI adoption. A 2024 BCG survey found that 46% of large companies reported mid-to-high levels of GenAI maturity, compared to just 28% of mid-sized firms. With greater access to talent, data, and capital, larger players have had an edge in taking on traditional, resource-intensive AI initiatives.
But that advantage appears to be fading. Recent research from the London Business School (LBS), the Institute of Directors (IoD), and Evolution Ltd suggests that mid-sized companies—particularly ambitious, growth-focused firms such as those backed by private equity—are well placed to overcome adoption barriers. Mid-sized firms are more agile than large companies, a key attribute as GenAI has become more accessible, making these companies prime candidates to leverage the technology and unlock their potential.
On the whole, while such firms are still behind, they may be poised to rebound. Research by Oxford Economics found that only a quarter of mid-sized companies surveyed had adopted AI in 2023 but 51% were planning to adopt AI in 2024; the adopters were expecting it to improve their outlook, specifically in new products and services (43%) and marketing and sales (48%).
Organizational scale: a double-edged sword
Until recently, it was (very) large companies that benefited most from GenAI, as the advantages of scale outweighed the challenges of organizational complexity that accompany size. Yet as technology evolves, large firms find themselves slow to adjust. Extensive layers of management, entrenched processes, and siloed operations can slow down the adoption of fast-evolving technologies like GenAI.
In large corporations, GenAI implementations can suffer from “death by a thousand pilots,” in which individual teams or functions develop proof-of-concept products and tools yet do not manage to scale them due to the enterprise complexity and lack of clear governance. As a result, large companies frequently struggle to fully realize the potential of new tools despite extensive investment in digital transformation efforts.
Mid-sized firms, by contrast, can benefit from leaner structures that allow for quicker decision-making and implementation, given the right leadership and governance. Their agility, when combined with the right strategy, enables them to adapt more quickly to new developments in the technology and more easily operationalize GenAI. (Mid-sized firms here refers to companies with revenues between $50 million to $1 billion, and although the precise definition will vary from country to country, this broadly refers to companies that are still small enough to have relatively simple operations and remain agile.)
While the benefits of size and scale provide once-decisive advantages in access to specialized talent and capital-intensive infrastructure, the evolution of GenAI as a technology—particularly the development of GenAI as a service, the emergence of streamlined platforms, and growth of customizable models—is creating a more level playing field between mid-sized and large firms.
GenAI providers, for instance, are significantly reducing the need for up-front investment and extensive IT capabilities, by offering models and infrastructure as a service. Streamlined platform solutions like Google Vertex AI and Snowflake also simplify the AI ecosystem, providing integrated tools for data management, model customization and deployment, all of which lower technical barriers and accelerate time-to-value.
The advance of customizable models through technologies like retrieval-augmented generation (RAG), meanwhile, allows mid-sized firms to leverage their proprietary data effectively without an army of in-house data scientists. Much of the coding needed to build traditional AI has been replaced with natural language prompt engineering to create GenAI-powered tools tailored to the company’s content, expertise, and workflows.
In addition, updates to existing software platforms including ERPs and CRMs are incorporating AI features, giving easy access to AI functionality on the existing tech stack. Mid-sized companies are well placed to adopt these rapidly, given they generally have less complex and less customized instances of software, so integrating new releases is simpler and faster than for larger companies.
Taking GenAI from adoption to value creation
Beyond adoption, mid-sized companies are well positioned to create value from GenAI, as it may help them tackle the operational constraints that often hold them back. Mid-sized firms often struggle to attract specialized talent, such as data scientists, and do not have the scale to make it economically viable to hire a full-time position. GenAI tools can expand the capabilities of existing staff, as demonstrated by a recent BCG experiment where management consultants were each asked to complete three basic data-science tasks outside their core consulting capabilities: data cleaning, predictive analytics, and statistical understanding.
Using GenAI to perform the tasks immediately expanded the consultants’ aptitude beyond their current abilities. These augmented participants showed a 13- to 49-percentage-point improvement over those working without GenAI and came within 12 to 17 percentage points of the benchmark for data scientists. Function- or role-specific tools are now entering the market and enabling companies to further expand the capabilities of existing employees. Sisense, for example, enables companies to build semantic data models without coding that users can then query through natural language queries, enabling managers to incorporate data-driven insights into their decision making without the need for data analysts or data scientists.
Another constraint often found at smaller companies is a lack of sufficient proprietary data to create differentiation. The recent study by LBS, IoD and Evolution Ltd. found just 56% of smaller firms with annual revenues of £10 million to £50 million stated they believe that proprietary knowledge is somewhat or extremely important to their business, compared with 72% of mid-sized companies with revenues over £50 million. Large companies, on the other hand, are already using traditional AI to extract value from proprietary data, having invested in cleaning and curating datasets.
Mid-sized firms, however, often have a wealth of unstructured data—from which they’ve struggled to extract value. A mid-sized company, for example, may have handbooks for customer service agents outlining product details and troubleshooting tips, along with transcripts of real customer support calls. With GenAI, such a firm could now unlock those insights without needing to hire a team of data scientists, using company data to make new connections, and creating and disseminating highly tailored organizational knowledge in real time. The result is improved customer service at a reduced cost—something that these companies would previously not have had the resources, capabilities or infrastructure to do.
Mid-sized companies backed by private equity firms have additional operational strengths—strategic alignment, financial and human capital, and focused implementation—that make them prime candidates for GenAI adoption. PE firms’ clear objectives and timelines for their portfolio companies, focusing on value creation within specific investment horizons (usually five years), enable decisive action to prioritize and implement GenAI applications. Companies backed by PE can also access the necessary financial and human capital for GenAI projects, giving these companies the capacity to invest heavily in leadership and advisory teams in anticipation of growth. As a result, they are often more willing to take calculated risks based on potential for high returns.
Strategies for mid-sized companies to harness GenAI
Mid-sized companies may now have some structural advantages for GenAI adoption compared to larger players, but that doesn’t guarantee success. Here are five strategic steps they can take right now to increase their chances of successful GenAI adoption on the road to value creation.
1. Build a scalable and flexible GenAI stack: Invest in scalable AI-as-a-service platforms that can grow with the company without significant additional investment.
2. Move to ‘reshape’ and ‘invent’: Move beyond deploying GenAI for incremental improvements to current processes, and rethink your business model and how you can reengineer entire functions. A recent BCG survey found that the companies at the forefront of AI adoption derive nearly two-thirds (62%) of the value they get deploying AI and GenAI in core business functions, with the remaining third (38%) coming from more peripheral support functions. The takeaway is clear: Go for deep applications that reengineer core functions and prioritize those that leverage unique, proprietary data to create a moat.
3. Look at what complements GenAI, not just the technology: As a recent Evolution Ltd white paper suggests, a key reason for disappointment with GenAI is an overemphasis on the technology itself with too little attention paid to what lies upstream—data engineering and proprietary data—and downstream—integrating GenAI into strategic decision-making and creating learning and experimentation loops.
4. Establish clear governance and leadership: Success with GenAI requires a strong commitment from a company’s leadership to implement governance structures that facilitate efficient decision-making and prioritize investment for the mid-term, not just immediate returns.
5. Enhance workforce capabilities: Use GenAI to augment employee skills, enabling them to perform tasks beyond their current capabilities.
GenAI: The ‘just right’ moment for mid-sized companies?
Mid-scale companies, once considered too small, may be “just right” to make the most out of today’s GenAI. To do so, however, they need a clear strategy and a tight focus on where GenAI can make a difference—not just reducing costs, but generating revenue and value. Those that are able to stay laser-focused on effective implementation will find the AI revolution is not just for the industry incumbents or nimble startups—it can be an inclusive wave that mid-sized companies are ideally suited to ride.
Fran?ois Candelon is a partner at private equity firm Seven2 and the former global director of the BCG Henderson Institute.
Michael G. Jacobides is the Sir Donald Gordon Professor of Entrepreneurship and Innovation at London Business School, academic advisor at the BCG Henderson Institute, and the lead advisor of Evolution Ltd.
Meenal Pore is a principal at the Boston Consulting Group and an ambassador at the BCG Henderson Institute.
Leonid Zhukov is the director of the BCG Global A.I. Institute and vice president of AI & Data Science at BCG.X.
Some of the companies mentioned in this column are past or present clients of the authors’ employers.