競爭優勢是各行各業成功的必要條件,這一點在制藥行業尤為明顯。藥企投入數億美元和大量時間,研究如何搶在競爭對手之前完成臨床試驗和藥品上市。
但它們不會單打獨斗。
在這些頂級藥企和小型生物科技公司背后,有Lifescience Dynamics等咨詢機構提供來自數十名學者和分析師的第三方信譽保證,而且更重要的是,它們提供了有價值的工具,可以為藥企帶來深刻的見解和建議,以加速產品研發和更快獲得美國食品藥品管理局(FDA)的批準。
Lifescience Dynamics公司高級顧問侯賽因·賈法爾解釋稱:“制藥是一個數據驅動的行業。為了向我們的客戶提供咨詢,我們需要獲取盡可能多的數據。”他是該公司采用人工智能的主要負責人。
Lifescience Dynamics的實力源于它的五款主要科技產品,這些產品整合了人工智能元素,包括機器學習、大語言模型和生成式AI等,可以計算大數據集、匯總信息和提供明智的建議。
一款新藥從發現、開發到最終上市,平均需要8至12年時間。Lifescience Dynamics創始人兼總裁拉法特·拉赫瑪尼解釋稱,在這個過程中,制藥團隊要做出許多決策,這些決策通常是基于“相互矛盾、有限或零星的數據”。為了最大程度降低風險,藥企必須向第三方研究機構尋求幫助,以驗證它們的數據和決策。因此,拉赫瑪尼才會在二十年前創建了Lifescience Dynamics。他之前曾任職于禮來(Eli Lilly)及其他醫療保健咨詢機構。
在過去幾年人工智能迎來飛速發展之前,他的團隊的許多任務依舊要靠人工來完成,每項任務每年都要投入數千個小時的人力。該公司的130多家客戶,其中大多數來自全球排名前20的制藥公司,因此這是一項艱巨的任務,但也存在更多出現人為錯誤的機會,對于受到嚴格監管的制藥行業來說,這是一個重大挑戰。
現在,在人工智能的協助下,有些任務只需要10分鐘就能完成,而且對這些任務的信心通常高達100%。雖然拉赫瑪尼一直認為Lifescience Dynamics是一家諳熟技術的公司,但這種心態真正的好處體現在其對人工智能的應用上。
賈法爾發現受影響最大的業務領域或許并不引人注目,卻給客戶和他自己的團隊創造了無與倫比的價值,其中包括數據收集、數據分析和數據可視化等。跟蹤臨床試驗對于制藥行業而言至關重要,尤其是競爭對手的試驗進展。賈法爾解釋稱,他的團隊以前會使用“龐大的”Excel數據表,團隊成員需要手動錄入數據,閱讀在線最新內容,然后更新數據表。2021年,他們推出了一款機器學習模型,可自動從clinicaltrials.gov等注冊網站抓取信息,并持續更新。他說道,實時數據自動化是該公司優化流程和提高效率以滿足客戶預期的關鍵。
此外,他負責的一個項目會從重要醫療行業會議上,抓取有關研討會和藥物更新的有價值的信息。許多活動的參會人數超過70,000人,有時候會有5,000多場研討會。在使用人工智能之前,匯總和分析數據是一項艱巨的任務;現在,Lifescience Dynamics的模型會自動提取摘要和細節,甚至可以總結和推薦值得參加的會議。
Lifescience Dynamics收集的見解都存儲于客戶的門戶網站上,客戶可以隨時登陸以全面了解他們的競爭情報項目、臨床試驗數據和藥物數據。賈法爾解釋稱,公司目前正在基于這些數據開發人工智能模型,使用自然語言處理客戶查詢,并更好地理解結果。它不僅能夠提高客戶-顧問關系的透明度,還能讓Lifescience團隊免于應對客戶提出的耗時漫長、占用大量資源的問題。
最近,賈法爾和他的團隊注意到生成式人工智能所帶來的好處,特別開發了在線調查,使獨立醫生可以參與調查,發表對某些藥物的評論和建議。作為同行審議過程的一個重要組成部分,藥企會獲取醫生對于潛在藥物現實的、面向患者的意見。對賈法爾而言,生成式人工智能和大語言模型可幫助他創建支持醫生在線討論的調查模板,并識別適合特定調查的專家。
賈法爾表示:“這項工作以前完全由人工完成,而且我們只能依靠自己的經驗和專業知識。但通過使用人工智能,我們可以向它提供我們所期望的討論指南的背景,然后它就會生成一個非常有用的模板,幫我們完成最終指南80%的工作。”
剩余20%的工作由該團隊手動完成。
雖然人工智能讓公司大獲成功,但賈法爾和拉赫瑪尼知道未來還有更大的挑戰。賈法爾計劃創建適用于其所在領域的人工智能模型。雖然Lifescience Dynamics可以從其歷史數據中提取信息,但真正的價值源于業內的更多共享數據。他解釋稱,很可惜,對醫療保健行業的嚴格監管和患者信息的保密性,以及醫療行業的競爭之激烈,意味著藥企出于多種原因不愿意公開自己的數據。一種令人擔憂的情況是,公司繼續獨立開發,而不是在全球共享集體數據,以便于人工智能可以快速學習。與其他領域相比,制藥行業可分享的數據確實更少。
拉赫瑪尼預測,制藥行業有關人工智能的爭論可能需要更長時間才能塵埃落定。他表示,盡管人工智能的出現令人興奮和激動,但舊的承諾和不支持這項技術的領導者依舊存在。但他對人工智能的未來充滿了信心,他認為人工智能是能夠幫助整個行業成功的工具。
拉赫瑪尼說道:“我能理解為什么他們不愿意使用人工智能,但這確實限制了人工智能的應用。我們的客戶雇傭我們,希望我們能在最短的時間內以最低的成本,為他們提供見解,并將見解轉變成遠見。這些人工智能工具能最大限度發揮數據的價值,讓數據變得生動起來。”(財富中文網)
翻譯:劉進龍
審校:汪皓
競爭優勢是各行各業成功的必要條件,這一點在制藥行業尤為明顯。藥企投入數億美元和大量時間,研究如何搶在競爭對手之前完成臨床試驗和藥品上市。
但它們不會單打獨斗。
在這些頂級藥企和小型生物科技公司背后,有Lifescience Dynamics等咨詢機構提供來自數十名學者和分析師的第三方信譽保證,而且更重要的是,它們提供了有價值的工具,可以為藥企帶來深刻的見解和建議,以加速產品研發和更快獲得美國食品藥品管理局(FDA)的批準。
Lifescience Dynamics公司高級顧問侯賽因·賈法爾解釋稱:“制藥是一個數據驅動的行業。為了向我們的客戶提供咨詢,我們需要獲取盡可能多的數據。”他是該公司采用人工智能的主要負責人。
Lifescience Dynamics的實力源于它的五款主要科技產品,這些產品整合了人工智能元素,包括機器學習、大語言模型和生成式AI等,可以計算大數據集、匯總信息和提供明智的建議。
一款新藥從發現、開發到最終上市,平均需要8至12年時間。Lifescience Dynamics創始人兼總裁拉法特·拉赫瑪尼解釋稱,在這個過程中,制藥團隊要做出許多決策,這些決策通常是基于“相互矛盾、有限或零星的數據”。為了最大程度降低風險,藥企必須向第三方研究機構尋求幫助,以驗證它們的數據和決策。因此,拉赫瑪尼才會在二十年前創建了Lifescience Dynamics。他之前曾任職于禮來(Eli Lilly)及其他醫療保健咨詢機構。
在過去幾年人工智能迎來飛速發展之前,他的團隊的許多任務依舊要靠人工來完成,每項任務每年都要投入數千個小時的人力。該公司的130多家客戶,其中大多數來自全球排名前20的制藥公司,因此這是一項艱巨的任務,但也存在更多出現人為錯誤的機會,對于受到嚴格監管的制藥行業來說,這是一個重大挑戰。
現在,在人工智能的協助下,有些任務只需要10分鐘就能完成,而且對這些任務的信心通常高達100%。雖然拉赫瑪尼一直認為Lifescience Dynamics是一家諳熟技術的公司,但這種心態真正的好處體現在其對人工智能的應用上。
賈法爾發現受影響最大的業務領域或許并不引人注目,卻給客戶和他自己的團隊創造了無與倫比的價值,其中包括數據收集、數據分析和數據可視化等。跟蹤臨床試驗對于制藥行業而言至關重要,尤其是競爭對手的試驗進展。賈法爾解釋稱,他的團隊以前會使用“龐大的”Excel數據表,團隊成員需要手動錄入數據,閱讀在線最新內容,然后更新數據表。2021年,他們推出了一款機器學習模型,可自動從clinicaltrials.gov等注冊網站抓取信息,并持續更新。他說道,實時數據自動化是該公司優化流程和提高效率以滿足客戶預期的關鍵。
此外,他負責的一個項目會從重要醫療行業會議上,抓取有關研討會和藥物更新的有價值的信息。許多活動的參會人數超過70,000人,有時候會有5,000多場研討會。在使用人工智能之前,匯總和分析數據是一項艱巨的任務;現在,Lifescience Dynamics的模型會自動提取摘要和細節,甚至可以總結和推薦值得參加的會議。
Lifescience Dynamics收集的見解都存儲于客戶的門戶網站上,客戶可以隨時登陸以全面了解他們的競爭情報項目、臨床試驗數據和藥物數據。賈法爾解釋稱,公司目前正在基于這些數據開發人工智能模型,使用自然語言處理客戶查詢,并更好地理解結果。它不僅能夠提高客戶-顧問關系的透明度,還能讓Lifescience團隊免于應對客戶提出的耗時漫長、占用大量資源的問題。
最近,賈法爾和他的團隊注意到生成式人工智能所帶來的好處,特別開發了在線調查,使獨立醫生可以參與調查,發表對某些藥物的評論和建議。作為同行審議過程的一個重要組成部分,藥企會獲取醫生對于潛在藥物現實的、面向患者的意見。對賈法爾而言,生成式人工智能和大語言模型可幫助他創建支持醫生在線討論的調查模板,并識別適合特定調查的專家。
賈法爾表示:“這項工作以前完全由人工完成,而且我們只能依靠自己的經驗和專業知識。但通過使用人工智能,我們可以向它提供我們所期望的討論指南的背景,然后它就會生成一個非常有用的模板,幫我們完成最終指南80%的工作。”
剩余20%的工作由該團隊手動完成。
雖然人工智能讓公司大獲成功,但賈法爾和拉赫瑪尼知道未來還有更大的挑戰。賈法爾計劃創建適用于其所在領域的人工智能模型。雖然Lifescience Dynamics可以從其歷史數據中提取信息,但真正的價值源于業內的更多共享數據。他解釋稱,很可惜,對醫療保健行業的嚴格監管和患者信息的保密性,以及醫療行業的競爭之激烈,意味著藥企出于多種原因不愿意公開自己的數據。一種令人擔憂的情況是,公司繼續獨立開發,而不是在全球共享集體數據,以便于人工智能可以快速學習。與其他領域相比,制藥行業可分享的數據確實更少。
拉赫瑪尼預測,制藥行業有關人工智能的爭論可能需要更長時間才能塵埃落定。他表示,盡管人工智能的出現令人興奮和激動,但舊的承諾和不支持這項技術的領導者依舊存在。但他對人工智能的未來充滿了信心,他認為人工智能是能夠幫助整個行業成功的工具。
拉赫瑪尼說道:“我能理解為什么他們不愿意使用人工智能,但這確實限制了人工智能的應用。我們的客戶雇傭我們,希望我們能在最短的時間內以最低的成本,為他們提供見解,并將見解轉變成遠見。這些人工智能工具能最大限度發揮數據的價值,讓數據變得生動起來。”(財富中文網)
翻譯:劉進龍
審校:汪皓
A competitive advantage is necessary for success across industries, but maybe nowhere so much as pharmaceuticals, where companies spend millions of dollars and thousands of hours researching how to get their developments through clinical trials and onto the market before their competitors.
But they don’t do it alone.
Behind the top pharmaceutical companies, as well as smaller biotech firms, consulting agencies like Lifescience Dynamics provide third-party credibility from dozens of academic scholars and analysts and, more important, supply valuable tools to provide pharma companies with insights and recommendations to speed up the development of their products and gain FDA approval.
“Pharma is a data-driven business,” explains Hussein Jaafar, a senior consultant at Lifescience Dynamics, who has largely led the charge on the team’s adoption of artificial intelligence. “To be able to consult our clients, we need to have access to as much data as possible.”
The power from Lifescience Dynamics comes from its five main technology products, which incorporate elements of artificial intelligence—including machine learning, large language models, and generative AI—to compute large data sets, amass information, and make educated recommendations.
On average, it takes eight to 12 years to discover, develop, and ultimately launch a drug. Along the way, pharmaceutical teams make several decisions, often under “conflicting, limited, or patchy data,” explains Lifescience Dynamics founder and president Rafaat Rahmani. To minimize risk, pharma companies are required to seek third-party research firms to validate their data and decision-making. That’s why Rahmani, who previously worked for Eli Lilly and other health care consultancies, started Lifescience Dynamics two decades ago.
Until the past few years with the explosion of AI capabilities, many of this team’s tasks were still done by hand, amassing thousands of hours of labor each year each. With more than 130 clients that hail from the majority of the world’s top 20 pharmaceutical companies, that was a hefty task but also left more opportunities for human error, a major challenge for something as regulated as the pharma industry.
Now, with the assistance of AI, some tasks take just 10 minutes, and confidence in the task is often 100%. Though Rahmani has long considered Lifescience Dynamics a technology-savvy company, the real benefit of that mentality has shown in its use of AI.
The areas of business where Jaafar has seen the biggest impact are possibly less sexy but unparalleled in value to clients and his own team: data collection, data analysis, and data visualization. Critical to the pharmaceutical industry is the tracking of clinical trials, especially by competitors. Jaafar explains that the team used to have “giant” Excel spreadsheets that a team member would need to physically click through, read updates online, then update the sheet. In 2021, they rolled out a machine-learning model that does this for the team by pulling information automatically from online registries like clinicaltrials.gov and continuously adding updates. The live feed automation, he says, has been key to streamlining their processes and increasing their effectiveness in meeting client expectations.
Similarly, he spearheaded a project that scrapes valuable information about sessions and drug updates from the major medical industry conference. Many of these events draw in upwards of 70,000 people with sometimes more than 5,000 sessions. It was a beast for a team to consolidate and analyze data before AI; now, the Lifescience Dynamics model pulls abstracts and details automatically, even summarizing and recommending sessions for attendance.
The insights gathered by Lifescience Dynamics all live in a client portal, allowing clients at any time to log on for a full look at their competitive intelligence projects, clinical trial data, and drug data. Jaafar explains that they are currently building AI models on top of that data to help clients query using natural language better understand the results. It not only adds transparency in the client-consultant relationship, but saves the Lifescience team from fielding time-intensive, resource-intensive questions from their clients.
More recently, Jaafar and his team looked at the benefits of generative AI, specifically around online surveys built to allow independent physicians to weigh in with critiques and recommendations for a particular drug. An important component of the peer review process, pharmaceutical companies reach out to physicians for real-world, patient-facing opinions on potential drugs. For Jaafar, generative AI and large-language models have allowed him to produce survey templates for online discussions among physicians as well as identify relevant experts for a specific survey.
“This was previously done entirely manually and we would just have to use our own experience and expertise to pull something together,” Jaafar says. “But with AI, we’re able to give it the background of the discussion guide we’d like to have, and it produces a very useful template that has us 80% of the way to a finalized guide.”
The team manually works on the remaining 20%.
While the team celebrates the success they have had with AI, Jaafar and Rahmani know bigger challenges await. Jaafar would like to build their own models for AI specific to their craft. Though Lifescience Dynamics can pull from its own historical data, the real value would come in more shared data from the industry. Unfortunately, he explains, the regulatory nature of health care and patient confidentiality combined with the competitive nature of the pharmaceutical industry means companies hold their own data close for a variety of reasons. A fear is that companies will continue to silo in fields of development rather than share collective data globally so that AI can learn at an exponential rate. There is simply less shareable data than other fields.
Rahmani predicts it will take more years to settle debates in pharmaceuticals over AI. For all the euphoria and excitement, there are old promises and leaders who just aren’t for technology, he says. He, however, feels confident in the future of AI as a tool to the industry’s collective success.
“I can understand why they aren’t willing to connect, but it limits the utility of AI,” Rahmani says. “Our clients engage us to give them the insight and convert insight into foresight, in the shortest time possible and in the least expensive way. These AI tools squeeze the most out of our data and bring that data alive.”