半個多世紀以來,半導體一直是技術創新的核心,技術的進步與半導體性能、能耗和成本的發展同步。現在,隨著對高性能計算 (HPC) 以及5G和人工智能應用的需求不斷增長,技術進步的需求猛增,為半導體技術新構想的未來鋪平了道路,未來可以讓無限的可能成為現實。
要了解這個未來,就有必要回顧60年前的發明,當時人們發明了一種將許多晶體管集成在同一塊芯片上的方法——集成電路(IC)或微芯片。在隨后的幾年里,半導體技術通過不斷的小型化而實現進步,正如摩爾定律所預測的那樣,集成電路上的晶體管數量每隔一年就會翻一番,該定律以美國工程師戈登·摩爾(Gordon Moore)的名字命名。這種持續的進步使我們的手機擁有比1969年阿波羅11號登月時所運用的70磅重的古老計算機更強大的計算能力。
從成本到普及再到價值
半導體技術和集成電路的一個關鍵屬性是不斷降低每個功能的成本。隨著時間的推移,這種持續的成本降低導致了半導體技術的普及。例如,1970年,美國電話電報公司(AT&T)首次將可視電話商業化,但由于成本高昂,它的用戶不到500人。
半導體技術的大規模成本降低得益于純晶圓代工廠模式的誕生,這種模式是臺積電在35年前成立時開創的。在這種模式下,純晶圓代工廠經營的半導體制造廠專注于為其他公司生產集成電路,而不是提供自己設計的集成電路產品。由于集成電路生產設施的建造和維護成本高昂,而且可能會極大地消耗企業的資金,因此將生產外包給代工廠可以讓企業將資源集中在最終產品上。這使得無晶圓廠的生產外包(僅限于設計)行業蓬勃發展,并有助于實現技術的大規模普及,使遠程工作、在線學習、共享經濟和娛樂流媒體成為如今的現實。
新冠肺炎疫情和隨之而來的封城成為技術創新的另一個轉折點,10年以上價值的數字化在一年之內實現,半導體需求也隨之增加。據麥肯錫公司(McKinsey & Co.)預測,按照目前的速度,到2030年,全球半導體年收入將超過1萬億美元,對全球電子產品增長的直接貢獻將達到3-4萬億美元。然而,持續降低成本導致了對半導體價值的低估。正如最近半導體供應鏈的挑戰所清楚地表明的那樣,半導體無處不在,并在現代社會中發揮著重要作用。
打開通往未來世界的大門
隨著計算設備變得無處不在,在全球網絡中生成和通信的數據量(通常是實時的)呈指數級增長。為了跟上這種增長,高性能計算變得至關重要,并且呈爆炸性增長。高性能計算指的是以高速處理數據和執行復雜計算以解決性能密集型問題的能力。如今,高性能計算已經超越智能手機成為增長的驅動力。據Report Ocean的研究,這是半導體行業增長最快的領域之一,預計到2027年,全球高性能計算芯片組市場規模將從2019年的43億美元增至136.8億美元。
虛擬世界與物理世界的融合將給人們的互動方式帶來翻天覆地的變化,而高性能計算的應用使之成為現實。除了大量由半導體制成的傳感器和執行器之外,虛擬世界和物理世界的這種集成還需要智能設備、可穿戴設備、物聯網等硬件,以及5G、人工智能和大數據分析等用于通信、理解信息和決策的技術。對于每一種應用,半導體含量及其提供的價值都將迅速提高。
半導體將為越來越多的產品注入智能和新功能,從而提高這些產品的價值。例如,自動駕駛汽車將通過先進的芯片變得更加安全和節能,這些芯片允許執行復雜的軟件功能和分析。根據這一預期的自動駕駛汽車能源效率,德克薩斯大學的研究估計,與美國目前的地面交通條件相比,凈能源將減少 11% 至 55%。社會也期待能夠出現超出我們想象的新的用戶應用程序。半導體提供的計算能力將推動個性化和社區醫療以及疫苗和藥物的研發。打擊社交媒體上的虛假信息需要更好的算法和計算能力來訓練人工智能模型。
例如,用于創建真實的堪比人類質量文本的最先進的人工智能語言模型之一GPT-3需要300 zetta-FLOPS (一種衡量超級計算機性能的指標)才能在高性能計算云上進行訓練。作為回報,這種人工智能語言模型所實現的能力也會令人印象深刻。最近,《紐約時報》的科技專欄作家凱文·盧斯(Kevin Roose)用GPT-3完成了一篇書評。
人工智能通常被認為是一種主要涉及軟件和算法的技術。然而,硬件技術打開了通往虛擬世界的大門,讓我們能夠使用從人工智能中獲得的信息。因此,即使在元宇宙中,實體也占據了中心位置。
共有的樂觀精神
隨著半導體技術的不斷進步,滿足了5G和人工智能時代的發展需求,能源效率已成為最重要的衡量標準,不僅因為計算能力已經因無法散熱而受到限制,還因為全球計算能源使用的升級速度比任何其他應用領域都快。單是半導體技術帶來的計算能源效率就在以飛快的速度提高——每兩年提高兩倍——人們普遍樂觀地認為,技術將像過去50年那樣繼續像上了發條一樣快速發展。
這種經常與摩爾定律混為一談的共有的樂觀精神也許比“定律”本身更重要。正是這個行業和整個社會所共有的樂觀精神,推動該行業直面挑戰,并使預測成為自我應驗的預測。
在未來的50年里,未來一代可能會使用虛擬現實和增強現實(VR/AR)作為他們與世界互動的主要方式。如今的VR/AR頭顯平均重量超過一磅,電池續航時間不到兩三個小時,而且價格昂貴,這讓我們想起了25年前的手機。要達到如今手機的普及程度,VR/AR設備還需要提高100倍以上。這只能通過半導體技術的不斷進步來實現。
未來幾十年將是半導體產業的黃金時代。在過去的50年里,半導體技術的發展就像在隧道里行走一樣。前進的道路很明確,因為每個人都努力沿著一條明確的道路前進,那就是縮小晶體管。現在我們正在接近隧道的出口。隧道之外還有更多的可能性:從材料到架構的創新使新的發展路徑成為可能,新的應用程序也明確了新的方向。我們不再受隧道的限制,如今,我們擁有無限的創新空間。(財富中文網)
劉德音是臺積電董事長。
譯者:中慧言-王芳
半個多世紀以來,半導體一直是技術創新的核心,技術的進步與半導體性能、能耗和成本的發展同步。現在,隨著對高性能計算 (HPC) 以及5G和人工智能應用的需求不斷增長,技術進步的需求猛增,為半導體技術新構想的未來鋪平了道路,未來可以讓無限的可能成為現實。
要了解這個未來,就有必要回顧60年前的發明,當時人們發明了一種將許多晶體管集成在同一塊芯片上的方法——集成電路(IC)或微芯片。在隨后的幾年里,半導體技術通過不斷的小型化而實現進步,正如摩爾定律所預測的那樣,集成電路上的晶體管數量每隔一年就會翻一番,該定律以美國工程師戈登·摩爾(Gordon Moore)的名字命名。這種持續的進步使我們的手機擁有比1969年阿波羅11號登月時所運用的70磅重的古老計算機更強大的計算能力。
從成本到普及再到價值
半導體技術和集成電路的一個關鍵屬性是不斷降低每個功能的成本。隨著時間的推移,這種持續的成本降低導致了半導體技術的普及。例如,1970年,美國電話電報公司(AT&T)首次將可視電話商業化,但由于成本高昂,它的用戶不到500人。
半導體技術的大規模成本降低得益于純晶圓代工廠模式的誕生,這種模式是臺積電在35年前成立時開創的。在這種模式下,純晶圓代工廠經營的半導體制造廠專注于為其他公司生產集成電路,而不是提供自己設計的集成電路產品。由于集成電路生產設施的建造和維護成本高昂,而且可能會極大地消耗企業的資金,因此將生產外包給代工廠可以讓企業將資源集中在最終產品上。這使得無晶圓廠的生產外包(僅限于設計)行業蓬勃發展,并有助于實現技術的大規模普及,使遠程工作、在線學習、共享經濟和娛樂流媒體成為如今的現實。
新冠肺炎疫情和隨之而來的封城成為技術創新的另一個轉折點,10年以上價值的數字化在一年之內實現,半導體需求也隨之增加。據麥肯錫公司(McKinsey & Co.)預測,按照目前的速度,到2030年,全球半導體年收入將超過1萬億美元,對全球電子產品增長的直接貢獻將達到3-4萬億美元。然而,持續降低成本導致了對半導體價值的低估。正如最近半導體供應鏈的挑戰所清楚地表明的那樣,半導體無處不在,并在現代社會中發揮著重要作用。
打開通往未來世界的大門
隨著計算設備變得無處不在,在全球網絡中生成和通信的數據量(通常是實時的)呈指數級增長。為了跟上這種增長,高性能計算變得至關重要,并且呈爆炸性增長。高性能計算指的是以高速處理數據和執行復雜計算以解決性能密集型問題的能力。如今,高性能計算已經超越智能手機成為增長的驅動力。據Report Ocean的研究,這是半導體行業增長最快的領域之一,預計到2027年,全球高性能計算芯片組市場規模將從2019年的43億美元增至136.8億美元。
虛擬世界與物理世界的融合將給人們的互動方式帶來翻天覆地的變化,而高性能計算的應用使之成為現實。除了大量由半導體制成的傳感器和執行器之外,虛擬世界和物理世界的這種集成還需要智能設備、可穿戴設備、物聯網等硬件,以及5G、人工智能和大數據分析等用于通信、理解信息和決策的技術。對于每一種應用,半導體含量及其提供的價值都將迅速提高。
半導體將為越來越多的產品注入智能和新功能,從而提高這些產品的價值。例如,自動駕駛汽車將通過先進的芯片變得更加安全和節能,這些芯片允許執行復雜的軟件功能和分析。根據這一預期的自動駕駛汽車能源效率,德克薩斯大學的研究估計,與美國目前的地面交通條件相比,凈能源將減少 11% 至 55%。社會也期待能夠出現超出我們想象的新的用戶應用程序。半導體提供的計算能力將推動個性化和社區醫療以及疫苗和藥物的研發。打擊社交媒體上的虛假信息需要更好的算法和計算能力來訓練人工智能模型。
例如,用于創建真實的堪比人類質量文本的最先進的人工智能語言模型之一GPT-3需要300 zetta-FLOPS (一種衡量超級計算機性能的指標)才能在高性能計算云上進行訓練。作為回報,這種人工智能語言模型所實現的能力也會令人印象深刻。最近,《紐約時報》的科技專欄作家凱文·盧斯(Kevin Roose)用GPT-3完成了一篇書評。
人工智能通常被認為是一種主要涉及軟件和算法的技術。然而,硬件技術打開了通往虛擬世界的大門,讓我們能夠使用從人工智能中獲得的信息。因此,即使在元宇宙中,實體也占據了中心位置。
共有的樂觀精神
隨著半導體技術的不斷進步,滿足了5G和人工智能時代的發展需求,能源效率已成為最重要的衡量標準,不僅因為計算能力已經因無法散熱而受到限制,還因為全球計算能源使用的升級速度比任何其他應用領域都快。單是半導體技術帶來的計算能源效率就在以飛快的速度提高——每兩年提高兩倍——人們普遍樂觀地認為,技術將像過去50年那樣繼續像上了發條一樣快速發展。
這種經常與摩爾定律混為一談的共有的樂觀精神也許比“定律”本身更重要。正是這個行業和整個社會所共有的樂觀精神,推動該行業直面挑戰,并使預測成為自我應驗的預測。
在未來的50年里,未來一代可能會使用虛擬現實和增強現實(VR/AR)作為他們與世界互動的主要方式。如今的VR/AR頭顯平均重量超過一磅,電池續航時間不到兩三個小時,而且價格昂貴,這讓我們想起了25年前的手機。要達到如今手機的普及程度,VR/AR設備還需要提高100倍以上。這只能通過半導體技術的不斷進步來實現。
未來幾十年將是半導體產業的黃金時代。在過去的50年里,半導體技術的發展就像在隧道里行走一樣。前進的道路很明確,因為每個人都努力沿著一條明確的道路前進,那就是縮小晶體管。現在我們正在接近隧道的出口。隧道之外還有更多的可能性:從材料到架構的創新使新的發展路徑成為可能,新的應用程序也明確了新的方向。我們不再受隧道的限制,如今,我們擁有無限的創新空間。(財富中文網)
劉德音是臺積電董事長。
譯者:中慧言-王芳
For over half a century, semiconductors have been at the heart of technological innovation, with advancements in technology marching to the cadence of developments in semiconductor performance, energy consumption, and cost. Now, with the ever-growing demand for high-performance computing (HPC), as well as 5G and A.I. applications, the need for technological advancement has skyrocketed, paving the way for a newly imagined future for semiconductor technology, where infinite possibilities can be realized.
To understand this future, it makes sense to look back 60 years in the past, to the invention of a way to put many transistors together on the same chip—the integrated circuit (IC) or microchip. Throughout the years that followed, semiconductor technology advanced through continuous miniaturization, which involved doubling the number of transistors on an integrated circuit every other year as predicted by Moore’s law, named after American engineer Gordon Moore. This continued advancement is what allows our mobile phones to have far more compute power than the now ancient 70-pound computer that landed Apollo 11 on the moon in 1969.
From cost to ubiquity to value
A key attribute of semiconductor technology and the integrated circuit has been relentless reduction of cost per function. This continuous cost reduction led to ubiquitous deployment of semiconductor technologies over time. The picture-phone, for instance, was first commercialized in 1970 by AT&T, but because of its high cost, it had fewer than 500 customers.
Large-scale cost reduction of semiconductor technology was helped along by the birth of the pure-play foundry model, pioneered by TSMC at its establishment 35 years ago. In this model, pure-play foundries operate semiconductor fabrication plants focused on producing ICs for other companies instead of offering IC products of their own design. As IC production facilities are expensive to build and maintain, and can be a huge drain on finances for companies, outsourcing this production to foundries allowed companies to focus their resources on their end product. This allowed the fabless (design only) industry to flourish and helped enable the large-scale ubiquitous deployment of the technologies that make remote working, online learning, the sharing economy, and entertainment streaming a reality today.
COVID-19 and the lockdowns it brought along with it became another turning point for technology innovation with more than 10 years’ worth of digitization happening over a single year, increasing the demand for semiconductors. At the current pace, annual global semiconductor revenue will grow to more than $1 trillion by 2030, directly contributing to $3 trillion to $4 trillion of global electronics growth, according to McKinsey & Co. Yet, the promise of continuous cost reduction has created an expectation that underestimates the value of semiconductors. As the recent semiconductor supply-chain challenge so clearly illustrates, semiconductors are everywhere and fulfill a valuable and vital role in modern society.
Opening doors to a future world
As computing devices become ubiquitous, the amount of data generated and communicated across a global network, often in real time, has grown exponentially. To keep up with this growth, high-performance computing (HPC) has become crucial and is seeing explosive growth. HPC is the ability to process data and perform complex calculations at high speeds to solve performance-intensive problems. Today, HPC has already surpassed the smartphone as a growth driver. It is one of the fastest growing segments of the semiconductor industry, with the global HPC chipset market size expected to reach $13.68 billion by 2027 from $4.30 billion in 2019, according to research from Report Ocean.
The integration of the virtual with the physical world will bring about a sea change in the way society interacts with one another and will be enabled by HPC applications. In addition to the multitude of sensors and actuators made of semiconductors, this integration of the virtual and the physical worlds requires hardware like smart appliances, wearable devices, IoT, and technologies like 5G, A.I., and big-data analytics for communicating, understanding information, and decision-making. For each of these applications, the semiconductor content, and the value it provides, will increase rapidly.
Semiconductors will imbue intelligence and new functionalities into more and more products, elevating the value of such products. For example, autonomous driving vehicles will become even safer and more energy efficient with advanced chips which allow for the execution of complex software functionalities and analytics. University of Texas research estimates a net energy reduction of 11% to 55% versus the current ground transportation conditions in the U.S., based off this expected autonomous vehicle energy efficiency. Society is also expecting new user applications beyond what we can imagine today. Personalized and community medicine as well as vaccine and drug discovery will get a boost from the computing power provided by semiconductors. Combating disinformation on social media will need better algorithms and computing power for training A.I. models.
As an example, one of the most advanced A.I. language models for creating realistic human-quality text, the GPT-3, requires 300 zetta-FLOPS (a measure of supercomputer performance) to train on a high-performance compute cloud. In return, the capability enabled by this A.I. language model can be impressive. GPT-3 recently was used by Kevin Roose, a tech columnist for the New York Times, to complete a book review.
A.I. is often thought of as a technology involving primarily software and algorithms. Yet, hardware technology is what opens the door to the virtual world and allows us to use the information derived from A.I. Thus, even in the metaverse, the physical takes center stage.
A shared optimism
As semiconductor technology advances to meet the needs of the 5G and A.I. era, energy efficiency has become the most important metric not only because computing power is already throttled by the inability to remove heat, but also because the global energy use of computing escalates faster than any other application area. Energy efficiency of computing due to semiconductor technology alone has been advancing at a rapid pace—2X every two years—and there is shared optimism that technology will continue to advance like clockwork as it did over the past 50 years.
This shared optimism that is often conflated with Moore’s law is perhaps more important than the “law” itself. It is this shared optimism by the industry and society at large, that has propelled the industry to meet the challenge and make the prophecy a self-fulfilling one.
In the next 50 years, the future generation will likely use virtual- and augmented-reality (VR/AR) as their principal means of interaction with the world. Today’s average VR/AR headsets weigh well over a pound, with a battery life of less than two to three hours, and a high price tag, which reminds us of the cell phones of 25 years ago. To achieve the same level of ubiquity as today’s cell phones, VR/AR devices will need to improve by more than 100 times. This can only be done with continuous advancement of semiconductor technology.
The upcoming decades will be a golden era for the semiconductor industry. Over the past 50 years, the development of semiconductor technology has been akin to walking inside a tunnel. The way ahead was clear as there was a well-defined path that everyone diligently followed—shrinking the transistor. Now we are approaching the exit of the tunnel. There are many more possibilities outside the tunnel: new paths made possible by innovations from materials to architecture and new destinations defined by new applications. We are no longer bound by the confines of the tunnel, and we now have unlimited room for unleashed innovation.
Mark Liu is the chairman of TSMC.