
在競爭激烈的跨境匯款(又稱匯款)業(yè)務中,人工智能正日益成為關鍵驅動力。然而,在市場領導者和主要挑戰(zhàn)者著手使用人工智能的方式上,對比非常鮮明。
一方面,市場領導者開發(fā)了分析平臺,可以實時分析競爭對手的匯率、費用和轉賬時間等數(shù)據(jù),這些數(shù)據(jù)來自大約1300個國家,涵蓋650多種貨幣對。該平臺幫助確定公司可以在哪些方面調(diào)整費用和費率以提高競爭力;將訪問數(shù)據(jù)的時間縮短了90%;并減少了70%的開支。市場領導者正在使用人工智能來提高效率、調(diào)整產(chǎn)品和改變定價,從而實現(xiàn)利潤最大化。
另一方面,在線挑戰(zhàn)者利用人工智能徹底顛覆公司的運作方式。該公司使用開發(fā)的專有算法來預測業(yè)務涉及的80多個國家對所有貨幣的需求。由于人工智能,它不必轉移資金,而是在每個國家維持銀行賬戶來支付交易。通過消除跨境轉賬的需要,這家新貴縮短了處理時間,并為客戶提供比競爭對手便宜80%至90%的轉賬費用。這家公司成立于十年前,在2021年占英國匯款市場的37%,估值120億美元。
要旨:挑戰(zhàn)者由于使用人工智能而實現(xiàn)迅猛發(fā)展,而市場領導者盡管使用了人工智能,卻仍在努力保持其市場份額。
與匯款業(yè)務一樣,其他領域業(yè)務也是如此。愛彼迎(Airbnb)、亞馬遜(Amazon)、谷歌(Google)、音樂服務網(wǎng)站(Spotify)和優(yōu)步(Uber)等天生的數(shù)字挑戰(zhàn)者創(chuàng)造了由人工智能驅動的全新商業(yè)模式和業(yè)務流程,而大多數(shù)老牌公司則使用人工智能技術來提高效率。結果就是,挑戰(zhàn)者成為市場顛覆者,以新的價值主張吸引客戶并挑戰(zhàn)原有市場的領導者,而市場領導者只是逐漸變得更好。難怪首席執(zhí)行官們抱怨說他們無法充分發(fā)揮人工智能投資的潛力。在2021年麻省理工學院SMR-BCG人工智能研究中,只有11%的樣本說他們通過使用人工智能實現(xiàn)了 "可觀的 "的經(jīng)濟效益——幾乎與前一年10%的樣本相同。
問題不再是公司是否應該采用人工智能,而是他們應該如何采用人工智能。我們的研究表明,當公司探索使用人工智能技術時,他們最好從頭開始,重新思考他們的商業(yè)模式和業(yè)務流程,將人工智能作為其業(yè)務核心。這樣做將幫助他們獲得競爭優(yōu)勢以及免受干擾。
不僅是天生的數(shù)字公司可以從頭開始;霍尼韋爾(Honeywell)、約翰迪爾(John Deere)、羅爾斯-羅伊斯(Rolls-Royce)和西門子(Siemens)等老牌公司也在學習這樣做。首席執(zhí)行官們可以采取三大步驟來實現(xiàn)這一目標:
重新設計商業(yè)模式
公司可以嘗試開發(fā)新的人工智能驅動商業(yè)模式。例如,農(nóng)業(yè)設備制造商約翰迪爾正在設計更好的產(chǎn)品并提供基于人工智能技術的服務,以提高農(nóng)民的盈利能力,從而為新的商業(yè)模式奠定基礎。它提供智能機器,讓客戶能夠用更少的農(nóng)藥種植出更多、更好的作物。例如,約翰迪爾的視覺人工智能驅動的LettuceBot使用機器學習軟件來區(qū)分萵苣和雜草。它可以在一秒鐘內(nèi)區(qū)分萵苣和雜草,并且只用少量除草劑殺死雜草,平均減少除草劑使用達90%。
雖然約翰迪爾的云支持JDLink系統(tǒng)允許其連接和管理農(nóng)場中的所有機器,但它還構建了一個基于人工智能的數(shù)據(jù)平臺約翰迪爾運營中心,允許客戶訪問農(nóng)場相關數(shù)據(jù)。農(nóng)民可以實時監(jiān)控機器運作狀況,分析機器性能,確定如何最好地利用設備,并與生態(tài)系統(tǒng)合作伙伴合作,對方提供有助于他們決定在什么地點和什么時間種植什么作物的見解。通過提供硬件、軟件、數(shù)據(jù)和專業(yè)知識,這家行業(yè)領導者幫助客戶最大限度地提高生產(chǎn)力和降低成本。約翰迪爾目前通過溢價出售其機器和數(shù)字服務來創(chuàng)收,但可以想象的是,它在未來可能會與農(nóng)民簽訂利潤分享協(xié)議——這是一種截然不同的商業(yè)模式。
重新思考目標
與其說使用人工智能只是為了讓業(yè)務流程更有效地運作,不如說公司可以利用人工智能技術來實現(xiàn)創(chuàng)造更多價值的目標。例如,當星巴克意識到顧客可以在網(wǎng)上、應用程序中、店內(nèi)訂購飲料,而且訂購的方式已經(jīng)成倍增加時,它意識到必須顛覆其流程,利用人工智能打造溫馨的顧客體驗。
星巴克傳統(tǒng)上遵循先到先得的飲料制作流程,如果顧客不在店內(nèi)訂購飲料就去取用的話,就有可能出現(xiàn)飲料溫度不合適的情況。因此,星巴克決定使用人工智能:它的算法將根據(jù)顧客的預計到達時間和訂單來決定店內(nèi)咖啡師沖泡飲料的順序。這將有助于優(yōu)化飲料制作過程并通過確保每位顧客收到的飲料溫度合適來提升顧客體驗。
重新構想價值鏈
為了有效地使用人工智能,公司必須在組織功能、內(nèi)部部門、外部合作伙伴和客戶之間建立新的聯(lián)系。他們必須將各組流程概念化為系統(tǒng),以優(yōu)化人工智能的使用。
以汽車制造商特斯拉為例,它不斷地與每個客戶保持聯(lián)系,甚至定期更新其車輛的軟件。當它的競爭對手需要幾個月的時間來創(chuàng)作新的設計時,它則會在研究數(shù)據(jù)的過程中改進產(chǎn)品。特斯拉的算法實時處理來自超過200萬輛汽車的數(shù)據(jù),并將結果傳遞給跨職能的產(chǎn)品開發(fā)團隊。這些數(shù)據(jù)驅動的洞察力使團隊能夠以前所未有的速度開發(fā)新版本,部分原因是特斯拉在組織內(nèi)部促進了人工智能驅動協(xié)作。
特斯拉的人工智能驅動系統(tǒng)也允許持續(xù)改進其制造工藝。如果客戶的車輛遇到哪怕是一個小問題,例如車窗出現(xiàn)振動,相關數(shù)據(jù)就會實時傳送給生產(chǎn)線上的特斯拉機器人。他們可以在員工進行測試以檢查噪音是否已消除時立即調(diào)整安裝過程。從某種意義上說,特斯拉顛覆了傳統(tǒng)的產(chǎn)業(yè)價值鏈,讓消費者成為其產(chǎn)品研發(fā)和改進周期的起點。
許多商業(yè)領袖都在慶祝他們成功地通過人工智能為現(xiàn)有的業(yè)務帶來漸進式改進。而其他人則踏上了釋放人工智能技術全部潛力的旅程。用人工智能重塑業(yè)務不再是假設命題;在人工智能時代,這可能是各公司實現(xiàn)蓬勃發(fā)展的唯一途徑。(財富中文網(wǎng))
譯者:中慧言-王芳
在特斯拉公司,數(shù)據(jù)驅動的洞察力使團隊能夠以前所未有的速度開發(fā)新版本。ZHANG PENG/LIGHTROCKET VIA GETTY IMAGES
在競爭激烈的跨境匯款(又稱匯款)業(yè)務中,人工智能正日益成為關鍵驅動力。然而,在市場領導者和主要挑戰(zhàn)者著手使用人工智能的方式上,對比非常鮮明。
一方面,市場領導者開發(fā)了分析平臺,可以實時分析競爭對手的匯率、費用和轉賬時間等數(shù)據(jù),這些數(shù)據(jù)來自大約1300個國家,涵蓋650多種貨幣對。該平臺幫助確定公司可以在哪些方面調(diào)整費用和費率以提高競爭力;將訪問數(shù)據(jù)的時間縮短了90%;并減少了70%的開支。市場領導者正在使用人工智能來提高效率、調(diào)整產(chǎn)品和改變定價,從而實現(xiàn)利潤最大化。
另一方面,在線挑戰(zhàn)者利用人工智能徹底顛覆公司的運作方式。該公司使用開發(fā)的專有算法來預測業(yè)務涉及的80多個國家對所有貨幣的需求。由于人工智能,它不必轉移資金,而是在每個國家維持銀行賬戶來支付交易。通過消除跨境轉賬的需要,這家新貴縮短了處理時間,并為客戶提供比競爭對手便宜80%至90%的轉賬費用。這家公司成立于十年前,在2021年占英國匯款市場的37%,估值120億美元。
要旨:挑戰(zhàn)者由于使用人工智能而實現(xiàn)迅猛發(fā)展,而市場領導者盡管使用了人工智能,卻仍在努力保持其市場份額。
與匯款業(yè)務一樣,其他領域業(yè)務也是如此。愛彼迎(Airbnb)、亞馬遜(Amazon)、谷歌(Google)、音樂服務網(wǎng)站(Spotify)和優(yōu)步(Uber)等天生的數(shù)字挑戰(zhàn)者創(chuàng)造了由人工智能驅動的全新商業(yè)模式和業(yè)務流程,而大多數(shù)老牌公司則使用人工智能技術來提高效率。結果就是,挑戰(zhàn)者成為市場顛覆者,以新的價值主張吸引客戶并挑戰(zhàn)原有市場的領導者,而市場領導者只是逐漸變得更好。難怪首席執(zhí)行官們抱怨說他們無法充分發(fā)揮人工智能投資的潛力。在2021年麻省理工學院SMR-BCG人工智能研究中,只有11%的樣本說他們通過使用人工智能實現(xiàn)了 "可觀的 "的經(jīng)濟效益——幾乎與前一年10%的樣本相同。
問題不再是公司是否應該采用人工智能,而是他們應該如何采用人工智能。我們的研究表明,當公司探索使用人工智能技術時,他們最好從頭開始,重新思考他們的商業(yè)模式和業(yè)務流程,將人工智能作為其業(yè)務核心。這樣做將幫助他們獲得競爭優(yōu)勢以及免受干擾。
不僅是天生的數(shù)字公司可以從頭開始;霍尼韋爾(Honeywell)、約翰迪爾(John Deere)、羅爾斯-羅伊斯(Rolls-Royce)和西門子(Siemens)等老牌公司也在學習這樣做。首席執(zhí)行官們可以采取三大步驟來實現(xiàn)這一目標:
重新設計商業(yè)模式
公司可以嘗試開發(fā)新的人工智能驅動商業(yè)模式。例如,農(nóng)業(yè)設備制造商約翰迪爾正在設計更好的產(chǎn)品并提供基于人工智能技術的服務,以提高農(nóng)民的盈利能力,從而為新的商業(yè)模式奠定基礎。它提供智能機器,讓客戶能夠用更少的農(nóng)藥種植出更多、更好的作物。例如,約翰迪爾的視覺人工智能驅動的LettuceBot使用機器學習軟件來區(qū)分萵苣和雜草。它可以在一秒鐘內(nèi)區(qū)分萵苣和雜草,并且只用少量除草劑殺死雜草,平均減少除草劑使用達90%。
雖然約翰迪爾的云支持JDLink系統(tǒng)允許其連接和管理農(nóng)場中的所有機器,但它還構建了一個基于人工智能的數(shù)據(jù)平臺約翰迪爾運營中心,允許客戶訪問農(nóng)場相關數(shù)據(jù)。農(nóng)民可以實時監(jiān)控機器運作狀況,分析機器性能,確定如何最好地利用設備,并與生態(tài)系統(tǒng)合作伙伴合作,對方提供有助于他們決定在什么地點和什么時間種植什么作物的見解。通過提供硬件、軟件、數(shù)據(jù)和專業(yè)知識,這家行業(yè)領導者幫助客戶最大限度地提高生產(chǎn)力和降低成本。約翰迪爾目前通過溢價出售其機器和數(shù)字服務來創(chuàng)收,但可以想象的是,它在未來可能會與農(nóng)民簽訂利潤分享協(xié)議——這是一種截然不同的商業(yè)模式。
重新思考目標
與其說使用人工智能只是為了讓業(yè)務流程更有效地運作,不如說公司可以利用人工智能技術來實現(xiàn)創(chuàng)造更多價值的目標。例如,當星巴克意識到顧客可以在網(wǎng)上、應用程序中、店內(nèi)訂購飲料,而且訂購的方式已經(jīng)成倍增加時,它意識到必須顛覆其流程,利用人工智能打造溫馨的顧客體驗。
星巴克傳統(tǒng)上遵循先到先得的飲料制作流程,如果顧客不在店內(nèi)訂購飲料就去取用的話,就有可能出現(xiàn)飲料溫度不合適的情況。因此,星巴克決定使用人工智能:它的算法將根據(jù)顧客的預計到達時間和訂單來決定店內(nèi)咖啡師沖泡飲料的順序。這將有助于優(yōu)化飲料制作過程并通過確保每位顧客收到的飲料溫度合適來提升顧客體驗。
重新構想價值鏈
為了有效地使用人工智能,公司必須在組織功能、內(nèi)部部門、外部合作伙伴和客戶之間建立新的聯(lián)系。他們必須將各組流程概念化為系統(tǒng),以優(yōu)化人工智能的使用。
以汽車制造商特斯拉為例,它不斷地與每個客戶保持聯(lián)系,甚至定期更新其車輛的軟件。當它的競爭對手需要幾個月的時間來創(chuàng)作新的設計時,它則會在研究數(shù)據(jù)的過程中改進產(chǎn)品。特斯拉的算法實時處理來自超過200萬輛汽車的數(shù)據(jù),并將結果傳遞給跨職能的產(chǎn)品開發(fā)團隊。這些數(shù)據(jù)驅動的洞察力使團隊能夠以前所未有的速度開發(fā)新版本,部分原因是特斯拉在組織內(nèi)部促進了人工智能驅動協(xié)作。
特斯拉的人工智能驅動系統(tǒng)也允許持續(xù)改進其制造工藝。如果客戶的車輛遇到哪怕是一個小問題,例如車窗出現(xiàn)振動,相關數(shù)據(jù)就會實時傳送給生產(chǎn)線上的特斯拉機器人。他們可以在員工進行測試以檢查噪音是否已消除時立即調(diào)整安裝過程。從某種意義上說,特斯拉顛覆了傳統(tǒng)的產(chǎn)業(yè)價值鏈,讓消費者成為其產(chǎn)品研發(fā)和改進周期的起點。
許多商業(yè)領袖都在慶祝他們成功地通過人工智能為現(xiàn)有的業(yè)務帶來漸進式改進。而其他人則踏上了釋放人工智能技術全部潛力的旅程。用人工智能重塑業(yè)務不再是假設命題;在人工智能時代,這可能是各公司實現(xiàn)蓬勃發(fā)展的唯一途徑。(財富中文網(wǎng))
譯者:中慧言-王芳
In the competitive cross-border remittances (aka money transfers) business, artificial intelligence is increasingly becoming a key driver. Yet, there couldn’t be a starker contrast between the manner in which the market leader and the prime challenger have set about using A.I.
On the one hand, the leader has developed an analytics platform that analyzes data in real time on its rivals’ exchange rates, fees, and transfer times from around 1,300 countries, spanning 650-plus currency pairs. The platform has helped identify where the company can alter its fees and rates to be more competitive; slashed the time to access data by 90%; and reduced its expenses by 70%. The leader is using A.I. to become more efficient, tweak its offerings, and alter its pricing, so it can maximize profits.
On the other hand, the online-only challenger has used A.I. to completely rethink the way the business works. It uses the proprietary algorithms it has developed to predict the demand for all the currencies in the 80-plus countries in which it operates. Thanks to A.I., it doesn’t have to move money around, and, instead, maintains bank accounts in each country to cover its transactions. By eliminating the need to transfer money across borders, the upstart has reduced its processing times and offers customers transfers that are 80% to 90% cheaper than rivals. Founded just a decade ago, the challenger accounted for 37% of the U.K. money transfers market in 2021, and boasted a valuation of $12 billion.
Bottom line: The challenger is growing rapidly because of A.I., while the leader is fighting to maintain share despite A.I..
As in the remittances business, so it has been elsewhere. Born-digital challengers—such as Airbnb, Amazon, Google, Spotify, and Uber—create all-new business models and business processes driven by A.I., while most incumbents use the technology to improve their efficiency. As a result, the challengers become market disrupters, wooing customers with new value propositions and challenging the leaders, while the latter only become incrementally better. No wonder CEOs complain that they’re unable to realize the full potential of their A.I. investments. Just 11% of the sample in the 2021 MIT SMR-BCG A.I. study said they had gained “substantial” financial benefits by using A.I.—almost the same as the previous year’s 10%.
The issue is no longer whether companies should adopt A.I., but how they should do so. Our studies show that when organizations explore the use of the technology, they would do well to start from scratch and rethink their business models and business processes, putting A.I. at their core. Doing so will help them gain an advantage over existing rivals as well as protection from disruption.
It isn’t only born-digital companies that can start afresh; incumbents such as Honeywell, John Deere, Rolls-Royce, and Siemens are also learning to do so. CEOs can take three steps to make that happen:
Redesign business models
Companies can try to develop new A.I.-powered business models. For example, the agricultural equipment-maker, John Deere, is designing better products as well as providing smart technology-based services to boost farmers’ profitability, thereby laying the foundations of a new business model. It offers smart machines, which allow its customers to grow more and better crops with fewer pesticides. For instance, John Deere’s vision A.I.-powered LettuceBot uses machine-learning software to distinguish between lettuce plants and weeds. It can do so in under a second, and kill only the latter with a small amount of herbicide, reducing herbicide use on average by 90%.
While John Deere’s cloud-enabled JDLink system allows it to connect and manage all the machines on a farm, it has also built an A.I.-based data platform, John Deere Operations Center, which allows customers to access farm-related data. Farmers can monitor activity in real time, analyze performance, determine how best to utilize equipment, and collaborate with ecosystem partners for insights that help them decide what to plant, where, and when. By providing hardware, software, data, and expertise, the industry leader helps its customers maximize productivity and minimize costs. John Deere currently generates revenues by selling its machines and digital services at a premium, but it could, conceivably, enter into profit-sharing agreements with farmers in the future—a radically different business model.
Rethink objectives
Instead of using A.I. just to make business processes work more efficiently, companies can use the technology to attain objectives that also create more value. For example, when Starbucks woke up to the fact that the ways in which customers could order drinks—online, in app, in store—had multiplied, it realized that it would have to turn its processes on their head to create a warm customer experience with A.I..
Starbucks had traditionally followed a first-come, first-served drinks-making process, which ran the risk of drinks not being served at the right temperature if customers were going to pick up their drinks without ordering them in stores. Starbucks has therefore decided to use A.I.: Its algorithms will decide the order in which baristas in stores should brew drinks, based on customers’ estimated arrival times and orders. That will help optimize the drink-making process and enhance the customer experience by ensuring that each customer receives the drink at the temperature at which it should be consumed.
Reimagine value chains
To use A.I. effectively, companies have to develop fresh links between organizational functions, internal departments, external partners, and customers. They must conceptualize groups of processes as systems to optimize the use of A.I..
Consider, for instance, the automaker Tesla, which continuously maintains relationships with each of its customers, even updating the software of its vehicles periodically. While its rivals take months to create fresh designs, the challenger improves its products as it studies data. Tesla’s algorithms process data from its fleet of over 2 million cars in real time, and pass on the findings to its cross-functional product development teams. Those data-driven insights enable the teams to develop new versions at unprecedented speed, partly because of the A.I.-powered collaboration that Tesla fosters inside the organization.
Tesla’s A.I.-powered systems allow for the continuous improvement of its manufacturing processes as well. If a customer’s vehicle runs into even a minor problem, such as experiencing vibrations in the car’s windows, the data are communicated in real time to Tesla’s robots on the manufacturing line. They can tweak the installation process immediately while employees carry out tests to check if the noises have been eliminated. In a sense, Tesla has upended the traditional industry value chain, making consumers the starting point of its product development and improvement cycle.
…
Many business leaders are celebrating their success in bring about incremental improvement in their existing businesses with A.I. while others are embarking on the journey to unlock the full potential of the technology. Reinventing business with A.I. is no longer a hypothetical proposition; in the age of A.I., that may be the only way for every organization to thrive.