一份追蹤人工智能發展趨勢的基準報告顯示,過去一年,將機器學習技術引入藥物研發的投資大幅增加。
由斯坦福大學(Stanford University)的以人為本人工智能研究所(Institute for Human-Centered Artificial Intelligence)贊助發布的年度報告《人工智能指數》(Artificial Intelligence Index)揭示,投資于該領域公司和項目的資金增至138億美元,超2019年同期的4.5倍以上。
以人為本人工智能研究所的經濟學教授、高級研究員、斯坦福數字經濟實驗室(Stanford Digital Economy Lab)主任埃里克·布林約爾松指出:“新冠疫情是觸發這種情況的部分原因。機器學習技術幫助確定了新的藥物選擇,幫助開發了疫苗,我們都深受其益。”
《人工智能指數》報告顯示,盡管人工智能初創公司在2020年接受了有史以來最多的資金(全球投資超過400億美元),但這些資金流向的公司越來越少。2020年,只有不到1000家人工智能初創企業獲得了融資;而2017年獲得融資的初創企業數量超過了4000家,曾經創下人工智能初創企業數量的新高。布林約爾松表示,這表明人工智能正在步入成熟技術的行列,逐漸從高科技初創企業走向更成熟的企業。
《人工智能指數》報告也顯示出全球對人工智能專業知識的需求。2019年,有數據可循的最近一年,65%的北美人工智能博士進入了這一領域,高于2010年的44.4%。對2020年14個國家領英(LinkedIn)數據的分析顯示,在幾乎所有國家,涉及人工智能技能的招聘人數都比2016年顯著增加,其中巴西、印度、加拿大和新加坡在這段時間內的增長幅度最大。盡管新冠疫情仍然在蔓延,領英表示,14個樣本國家的招聘還在繼續。
疫情似乎沒有挫傷企業對人工智能的熱情。LinkedIn引用麥肯錫公司(McKinsey)的一項調查中,一半的商業領袖表示,疫情不會影響他們的人工智能支出;另有27%的商業領袖表示,疫情反而促使他們增加了支出:企業加快了數字化轉型的步伐,以應對遠程辦公、供應鏈中斷、電子商務激增的情況,以及在線下員工減少的環境下維持工廠運轉的需要。
布林約爾松強調,盡管出現了激增的態勢,美國工業對人工智能的采用仍然處于早期階段。布林約爾松對85萬家美國公司進行了調查,結果顯示,大部分先進技術的使用率只有個位數。他說,調查還發現只有1.3%的公司使用了任意一種機器人技術。
布林約爾松指出,人工智能及其他自動化形式的采用尚未對生產率等美國經濟數據產生影響,這可以從兩方面分析:首先,傳統的經濟統計數據不太善于捕捉人工智能帶來的一些價值,但同時,他認為新技術帶來的生產率增長遵循J形曲線的形狀,而以現有人工智能水平,我們仍然處于曲線的底部。他說:“一項技術要想實現突破,通常需要在其他技術、人力技能和業務流程重組方面進行大量互補投資,才能出現生產率的大幅提升。”
《人工智能指數》報告表明,人工智能技術在很多方面都在持續變強。在“生成系統”中尤其如此——這一系統可以自動生成新圖像或書寫文本段落,與人類制作的類似作品往往難以區分。
對于一些既需要視覺技能又需要語言技能的任務,人工智能系統也取得了巨大的進步。在基準測試中,給軟件出示一張圖片,并提出一個必須正確回答的有關圖片的問題——頂級人工智能軟件的回答正確率從2015年的40%提高到了76%(人類正確率為81%)。在另一項測試中,給軟件出示一張圖片,提出一個難題,要求用推理來證明答案——最好的機器目前得分為70.5%,高于2018年的44%(人類平均成績約為85%)。
報告還強調了中國和美國之間的人工智能競賽。2020年,中國科學家在學術期刊上發表的人工智能研究論文,在數量上超過了美國;但美國科學家的論文在大型會議上被接受的頻率更高,也更頻繁地被全球其他研究人員引用。大學仍然是美國在人工智能技術方面實力強勁的關鍵因素,但同時,美國的大學嚴重依賴外國生源:2019年,北美的人工智能博士中有64.3%是外國學生,比2018年增加了4.3%。但是,當這些外國學生畢業后,有82%的人選擇留在美國工作。
多樣性仍然是人工智能工作人員面臨的一大挑戰。報告發現,美國近一半新入學的人工智能博士生是白人,而黑人僅占2.4%,西班牙裔占3.2%。
此外,報告表示,人工智能倫理問題仍然令人擔憂。該報告稱,盡管人工智能領域的偏見、公平和倫理問題受到了越來越多的關注,但人工智能領域對用以衡量倫理問題研究進展的標準缺乏共識。報告還指出,研究人員和公民社會團體對人工智能倫理的興趣要比在人工智能技術企業工作的人強烈得多。(財富中文網)
編譯:楊二一
一份追蹤人工智能發展趨勢的基準報告顯示,過去一年,將機器學習技術引入藥物研發的投資大幅增加。
由斯坦福大學(Stanford University)的以人為本人工智能研究所(Institute for Human-Centered Artificial Intelligence)贊助發布的年度報告《人工智能指數》(Artificial Intelligence Index)揭示,投資于該領域公司和項目的資金增至138億美元,超2019年同期的4.5倍以上。
以人為本人工智能研究所的經濟學教授、高級研究員、斯坦福數字經濟實驗室(Stanford Digital Economy Lab)主任埃里克·布林約爾松指出:“新冠疫情是觸發這種情況的部分原因。機器學習技術幫助確定了新的藥物選擇,幫助開發了疫苗,我們都深受其益。”
《人工智能指數》報告顯示,盡管人工智能初創公司在2020年接受了有史以來最多的資金(全球投資超過400億美元),但這些資金流向的公司越來越少。2020年,只有不到1000家人工智能初創企業獲得了融資;而2017年獲得融資的初創企業數量超過了4000家,曾經創下人工智能初創企業數量的新高。布林約爾松表示,這表明人工智能正在步入成熟技術的行列,逐漸從高科技初創企業走向更成熟的企業。
《人工智能指數》報告也顯示出全球對人工智能專業知識的需求。2019年,有數據可循的最近一年,65%的北美人工智能博士進入了這一領域,高于2010年的44.4%。對2020年14個國家領英(LinkedIn)數據的分析顯示,在幾乎所有國家,涉及人工智能技能的招聘人數都比2016年顯著增加,其中巴西、印度、加拿大和新加坡在這段時間內的增長幅度最大。盡管新冠疫情仍然在蔓延,領英表示,14個樣本國家的招聘還在繼續。
疫情似乎沒有挫傷企業對人工智能的熱情。LinkedIn引用麥肯錫公司(McKinsey)的一項調查中,一半的商業領袖表示,疫情不會影響他們的人工智能支出;另有27%的商業領袖表示,疫情反而促使他們增加了支出:企業加快了數字化轉型的步伐,以應對遠程辦公、供應鏈中斷、電子商務激增的情況,以及在線下員工減少的環境下維持工廠運轉的需要。
布林約爾松強調,盡管出現了激增的態勢,美國工業對人工智能的采用仍然處于早期階段。布林約爾松對85萬家美國公司進行了調查,結果顯示,大部分先進技術的使用率只有個位數。他說,調查還發現只有1.3%的公司使用了任意一種機器人技術。
布林約爾松指出,人工智能及其他自動化形式的采用尚未對生產率等美國經濟數據產生影響,這可以從兩方面分析:首先,傳統的經濟統計數據不太善于捕捉人工智能帶來的一些價值,但同時,他認為新技術帶來的生產率增長遵循J形曲線的形狀,而以現有人工智能水平,我們仍然處于曲線的底部。他說:“一項技術要想實現突破,通常需要在其他技術、人力技能和業務流程重組方面進行大量互補投資,才能出現生產率的大幅提升。”
《人工智能指數》報告表明,人工智能技術在很多方面都在持續變強。在“生成系統”中尤其如此——這一系統可以自動生成新圖像或書寫文本段落,與人類制作的類似作品往往難以區分。
對于一些既需要視覺技能又需要語言技能的任務,人工智能系統也取得了巨大的進步。在基準測試中,給軟件出示一張圖片,并提出一個必須正確回答的有關圖片的問題——頂級人工智能軟件的回答正確率從2015年的40%提高到了76%(人類正確率為81%)。在另一項測試中,給軟件出示一張圖片,提出一個難題,要求用推理來證明答案——最好的機器目前得分為70.5%,高于2018年的44%(人類平均成績約為85%)。
報告還強調了中國和美國之間的人工智能競賽。2020年,中國科學家在學術期刊上發表的人工智能研究論文,在數量上超過了美國;但美國科學家的論文在大型會議上被接受的頻率更高,也更頻繁地被全球其他研究人員引用。大學仍然是美國在人工智能技術方面實力強勁的關鍵因素,但同時,美國的大學嚴重依賴外國生源:2019年,北美的人工智能博士中有64.3%是外國學生,比2018年增加了4.3%。但是,當這些外國學生畢業后,有82%的人選擇留在美國工作。
多樣性仍然是人工智能工作人員面臨的一大挑戰。報告發現,美國近一半新入學的人工智能博士生是白人,而黑人僅占2.4%,西班牙裔占3.2%。
此外,報告表示,人工智能倫理問題仍然令人擔憂。該報告稱,盡管人工智能領域的偏見、公平和倫理問題受到了越來越多的關注,但人工智能領域對用以衡量倫理問題研究進展的標準缺乏共識。報告還指出,研究人員和公民社會團體對人工智能倫理的興趣要比在人工智能技術企業工作的人強烈得多。(財富中文網)
編譯:楊二一
Investments to bring the power of machine learning to drug discovery have soared in the past year, according to a benchmark report that tracks trends in the development of artificial intelligence.
The money committed to companies and projects in this area increased to $13.8 billion, more than 4.5 times that invested in 2019, according to the Artificial Intelligence Index, an annual report produced under the auspices of Stanford University’s Institute for Human-Centered Artificial Intelligence (HAI).
“The pandemic is part of what drove that,” notes Erik Brynjolfsson, an economics professor, senior fellow at HAI, and director of the Stanford Digital Economy Lab. “We have all benefited from machine-learning techniques that have helped identify new drug options and helped with vaccine development.”
The A.I. Index showed that while A.I. startups received a record amount of funding in 2020, with more than $40 billion invested globally, that money went to an increasingly small number of companies. Fewer than 1,000 A.I. startups received funding in 2020 compared with more than 4,000 in 2017, which was the high-water mark for the number of A.I. startups. Brynjolfsson said this was an indication that A.I. was beginning to mature as a technology and was moving from high-tech startups into more established businesses.
The A.I. Index also showed the continued demand for A.I. expertise in business globally. In 2019, the latest year for which figures were available, 65% of North American Ph.D.s in A.I. went to work in industry, up from 44.4% in 2010. An analysis of 2020 LinkedIn data from 14 countries shows that the hiring of those with A.I. skills is significantly higher than in 2016 across almost every country, with Brazil, India, Canada, and Singapore showing the largest increase over that period. Despite the pandemic, LinkedIn indicated continued hiring across all 14 nations in the sample.
Nor does the pandemic seem to have dented business enthusiasm for A.I.: The A.I. Index cited a McKinsey survey in which half of business leaders said the pandemic would have no effect on their A.I. spending, while 27% said it was actually prompting them to increase spending, as companies accelerated digital transformation efforts to deal with remote workforces, supply chain disruptions, a jump in e-commerce, and the need to run manufacturing operations with fewer staff physically on factory floors.
Despite this surge, Brynjolfsson emphasized that adoption of A.I. was still at an early stage in American industry. In a survey of 850,000 U.S. companies that he worked on, Brynjolfsson said that adoption of most advanced technologies was in the low single-digit percentages. He said that only 1.3% of the firms in that survey reported using any kind of robotics, for instance.
He said that the fact that adoption of A.I. and other forms of automation has not yet had an impact on U.S. economic data, such as productivity, is likely a function of two things: First, he said, conventional economic statistics are not very good at capturing some of the value from A.I. But he also said that he thought productivity gains from new technologies followed a J-curve shape and that with A.I., we were still at the bottom of that curve. “A technology breakthrough often needs a lot of complementary investments in other technology, in human skills, and in reorganization of business processes before you can start to see big productivity gains,” he said.
The A.I. Index showed that the technology is continuing to become increasingly powerful in many ways. This was particularly true of so-called generative systems, which can automatically create new images or write passages of text that are often indistinguishable from similar examples made by humans.
For certain tasks that involve both visual and language skills, A.I. systems have also made a big leap forward in capabilities. On a benchmark test in which the software is given an image and a question about that image that it must answer correctly, top A.I. software now answers with 76% accuracy, up from 40% in 2015. Humans score about 81% on the test. In another test in which the software is given an image and then asked a difficult question and required to justify its answer with reasoning, the best machines now score 70.5%, up from just 44% in 2018. Humans average about 85% on this task.
The report also highlighted the continued technological arms race between China and the U.S. in A.I.: China surpassed the U.S. in 2020 in terms of the number of A.I. research papers its scientists published in academic journals, but the U.S. scientists’ papers were more frequently accepted for prestigious conferences and were more highly cited by other researchers globally. U.S. universities remain a key factor in the country’s prowess in the technology, but they are heavily dependent on foreign students: In 2019, 64.3% of A.I. Ph.D.s in North America were foreign students, 4.3% more than the year before. But of those graduating, 82% remained and took jobs in the U.S.
Diversity remains a big challenge among those working on A.I. Almost half of all new A.I. Ph.D. students in the U.S. were white, while just 2.4% were Black, and 3.2% were Hispanic, the report found.
And A.I. ethics remains a fraught area, the report indicated. It said that while an increasing amount of attention was being paid to bias, fairness, and ethics in A.I., the field lacked a consensus around benchmarks that could be used to measure progress. It also noted that there was a far stronger interest in A.I. ethics among researchers and civil society groups than there was among those working in businesses using the technology.