隨著美國得克薩斯州電力的完全恢復,在這個天氣狀況越發難以預測的時代,得州面臨著“大量能源基礎設施已經脆弱不堪以及如何預防此類事情再次發生”等諸多長期問題。
在極寒天氣的影響下,得州所有事物都未能幸免于難,從生產原油的二疊紀盆地(Permian Basin)到天然氣發電廠,再到得州異常獨立的電網系統,這個內部相互關聯的事故被稱之為“完美風暴”和“黑天鵝事件”。然而,結冰的渦輪機(拖累了得州風力發電,但風力發電僅占該州冬季電力供應量的約7%)卻受到了異常的重視,一些政客稱,得州的可再生能源資源尤為脆弱。
事實上,此次斷電的絕大部分原因在于傳統發電設施的關閉,尤其是天然氣。得州電力可靠性理事會(Electric Reliability Council of Texas)稱,得州約80%的電力來自于天然氣、煤或核電。
事實上,得州出現酷熱和強颶風天氣的可能性更大,風力發電機較為脆弱的原因與其他基礎設施類似:得州很少下雪。盡管風力發電機已經針對極端天氣不斷進行了調整,但這類極端天氣在這些地區都屬于大概率事件。
全球最冷的風力發電廠
在全球較為寒冷的地帶,人們很少聽到風力發電廠停擺的消息,這是有原因的。維斯塔斯公司(Vestas)從事寒冷氣候解決方案開發的高級產品經理布萊恩·道格布雅閣·尼爾森說,像俄羅斯、瑞典北部和加拿大,人們在規劃的最初解決段就會考慮極端寒冷天氣。維斯塔斯是全球最大的渦輪機制造商。
道格布雅閣·尼爾森對風力發電廠選定地址的氣候評估不僅僅包括最低氣溫,還包括適度和風速。如果沒有風的話,渦輪結不結冰是無所謂的。它還涉及評估結冰(會降低渦輪轉速,并有可能使渦輪完全停轉)在整個年度會對發電帶來多大的影響,也就是風力年發電量比例。
尼爾森說,北歐國家有很多風力發電廠,其冬季陰暗潮濕,風力年發電量比例為3%到4%。他指出,用于規避結冰影響的額外投資往往集中在損失達到4%或以上的地區,而10%則代表著“極端嚴重”的地區。
盡可能地減少結冰的影響可能意味著改變渦輪發電機所處的位置以及它們的排列方式,也可以安裝除冰或防結冰產品。對維斯塔斯這類公司來說,這是一項新近開展且不斷增長的業務。除冰產品于2018年推出,包括在渦輪轉子上直接安裝加熱面板,這樣轉子就不會結冰。
這類產品不僅出現在了瑞典和加拿大這類地區,希臘和土耳其的一些風電廠也能夠見到其身影。
尼爾森指出:“如果這些地區有山的話,那么自然而然就會有冰和雪。”
另一方面,他注意到,由于近海海水的水溫會高一些,因此近海渦輪很少出現這類問題。
像得州這樣的地區,這種極寒天氣可能每十年發生一次,因此很難進行預測。即便這類十年一遇的風暴極具破壞力,但從商業角度來講,這類地區的氣候不大可能引發除冰技術的使用。
他說,這種調整需要拆掉轉子并重新安裝,是“一筆巨大的投資”。
熱浪、颶風和雷暴
然而與能源設施的其他部件一樣,渦輪面臨的風險因素不僅僅只有低溫或極寒天氣。所有類型的極端天氣都必須予以考慮。
華氏113度(約合45攝氏度)及以上溫度的極高溫被認為是更大的威脅。
尼爾森說:“我們更多地將[除冰產品]看作是一種小眾產品,在這一領域,高溫市場越來越受到關注。”他還表示,該地區似乎越來越多的風電開發項目都存在更大的高溫風險,不是超低溫風險。
極高溫所帶來的問題主要在于,渦輪使用的設備會過熱并關閉,繼而導致發電中斷。因此,這些維斯塔斯的渦輪都配備了額外的特殊冷卻系統。
他說,渦輪發電機還必須可以在颶風中正常運轉,也就是需要安裝能夠在停電期間使用的備用電源系統,從而讓渦輪可以將自身調整至迎風方向,這種技術已經在菲律賓使用。尼爾森還說,同樣,位于日本的渦輪則必須能夠承受極端的強風和惡劣的雷暴天氣。
然而,盡管渦輪必須根據其最有可能面臨的氣候和極端天氣事件不斷進行調整,但怪異事件的發生頻率越來越高怎么辦,例如得州的暴風雪和敘利亞的酷熱?渦輪必須有能力承受所有的自然現象嗎?
與以往一樣,這完全取決于開發商是否愿意花錢來應對各種可能出現的場景。
尼爾森指出:“這也是設計上的折衷。如果標準的渦輪涵蓋了所有部件,其價格可能會貴的有點離譜。”
任何基礎設施都將受制于快速變化的氣候條件,渦輪也面臨著同樣的問題:未來數十年的氣候模型是否可以切實反映渦輪所需的調整,以及得州最終愿意為此付出的資金。(財富中文網)
譯者:馮豐
審校:夏林
隨著美國得克薩斯州電力的完全恢復,在這個天氣狀況越發難以預測的時代,得州面臨著“大量能源基礎設施已經脆弱不堪以及如何預防此類事情再次發生”等諸多長期問題。
在極寒天氣的影響下,得州所有事物都未能幸免于難,從生產原油的二疊紀盆地(Permian Basin)到天然氣發電廠,再到得州異常獨立的電網系統,這個內部相互關聯的事故被稱之為“完美風暴”和“黑天鵝事件”。然而,結冰的渦輪機(拖累了得州風力發電,但風力發電僅占該州冬季電力供應量的約7%)卻受到了異常的重視,一些政客稱,得州的可再生能源資源尤為脆弱。
事實上,此次斷電的絕大部分原因在于傳統發電設施的關閉,尤其是天然氣。得州電力可靠性理事會(Electric Reliability Council of Texas)稱,得州約80%的電力來自于天然氣、煤或核電。
事實上,得州出現酷熱和強颶風天氣的可能性更大,風力發電機較為脆弱的原因與其他基礎設施類似:得州很少下雪。盡管風力發電機已經針對極端天氣不斷進行了調整,但這類極端天氣在這些地區都屬于大概率事件。
全球最冷的風力發電廠
在全球較為寒冷的地帶,人們很少聽到風力發電廠停擺的消息,這是有原因的。維斯塔斯公司(Vestas)從事寒冷氣候解決方案開發的高級產品經理布萊恩·道格布雅閣·尼爾森說,像俄羅斯、瑞典北部和加拿大,人們在規劃的最初解決段就會考慮極端寒冷天氣。維斯塔斯是全球最大的渦輪機制造商。
道格布雅閣·尼爾森對風力發電廠選定地址的氣候評估不僅僅包括最低氣溫,還包括適度和風速。如果沒有風的話,渦輪結不結冰是無所謂的。它還涉及評估結冰(會降低渦輪轉速,并有可能使渦輪完全停轉)在整個年度會對發電帶來多大的影響,也就是風力年發電量比例。
尼爾森說,北歐國家有很多風力發電廠,其冬季陰暗潮濕,風力年發電量比例為3%到4%。他指出,用于規避結冰影響的額外投資往往集中在損失達到4%或以上的地區,而10%則代表著“極端嚴重”的地區。
盡可能地減少結冰的影響可能意味著改變渦輪發電機所處的位置以及它們的排列方式,也可以安裝除冰或防結冰產品。對維斯塔斯這類公司來說,這是一項新近開展且不斷增長的業務。除冰產品于2018年推出,包括在渦輪轉子上直接安裝加熱面板,這樣轉子就不會結冰。
這類產品不僅出現在了瑞典和加拿大這類地區,希臘和土耳其的一些風電廠也能夠見到其身影。
尼爾森指出:“如果這些地區有山的話,那么自然而然就會有冰和雪。”
另一方面,他注意到,由于近海海水的水溫會高一些,因此近海渦輪很少出現這類問題。
像得州這樣的地區,這種極寒天氣可能每十年發生一次,因此很難進行預測。即便這類十年一遇的風暴極具破壞力,但從商業角度來講,這類地區的氣候不大可能引發除冰技術的使用。
他說,這種調整需要拆掉轉子并重新安裝,是“一筆巨大的投資”。
熱浪、颶風和雷暴
然而與能源設施的其他部件一樣,渦輪面臨的風險因素不僅僅只有低溫或極寒天氣。所有類型的極端天氣都必須予以考慮。
華氏113度(約合45攝氏度)及以上溫度的極高溫被認為是更大的威脅。
尼爾森說:“我們更多地將[除冰產品]看作是一種小眾產品,在這一領域,高溫市場越來越受到關注。”他還表示,該地區似乎越來越多的風電開發項目都存在更大的高溫風險,不是超低溫風險。
極高溫所帶來的問題主要在于,渦輪使用的設備會過熱并關閉,繼而導致發電中斷。因此,這些維斯塔斯的渦輪都配備了額外的特殊冷卻系統。
他說,渦輪發電機還必須可以在颶風中正常運轉,也就是需要安裝能夠在停電期間使用的備用電源系統,從而讓渦輪可以將自身調整至迎風方向,這種技術已經在菲律賓使用。尼爾森還說,同樣,位于日本的渦輪則必須能夠承受極端的強風和惡劣的雷暴天氣。
然而,盡管渦輪必須根據其最有可能面臨的氣候和極端天氣事件不斷進行調整,但怪異事件的發生頻率越來越高怎么辦,例如得州的暴風雪和敘利亞的酷熱?渦輪必須有能力承受所有的自然現象嗎?
與以往一樣,這完全取決于開發商是否愿意花錢來應對各種可能出現的場景。
尼爾森指出:“這也是設計上的折衷。如果標準的渦輪涵蓋了所有部件,其價格可能會貴的有點離譜。”
任何基礎設施都將受制于快速變化的氣候條件,渦輪也面臨著同樣的問題:未來數十年的氣候模型是否可以切實反映渦輪所需的調整,以及得州最終愿意為此付出的資金。(財富中文網)
譯者:馮豐
審校:夏林
As power has returned en masse to Texas, the state faces long-term questions about the fragility of its vast energy infrastructure in an age of increasingly unpredictable weather patterns—and how to prevent the outage from happening again.
The freezing temperatures affected everything from the oil-producing Permian Basin, to the natural-gas-fired power plants, to Texas's unusually self-contained grid system—an interconnected failure that's been called a "perfect storm" and a "Black Swan event." But icy rotors, which slowed Texas wind energy production—responsible for only about 7% of the state's winter power—got particular attention, with some politicians claiming the state's renewable energy sources were particularly vulnerable.
In fact, the outages were overwhelmingly because of shutdowns of conventional power infrastructure, particularly gas. About 80% of Texas’s power comes from gas, coal, or nuclear, according to ERCOT, the Electric Reliability Council of Texas.
In fact, in a state where weather is more likely to include scorching heat waves and powerful hurricanes, wind turbines were vulnerable for the same reason other infrastructure was vulnerable: It doesn't usually snow in Texas. While turbines have increasingly been adapted to extreme weather, they've been adapted to extreme weather that those regions are likely to expect.
The world’s iciest wind farms
There's a reason you don't hear about constant wind farm outages in the chillier corners of the world. In places like Russia, northern Sweden, and Canada, extreme cold is something that's accounted for in the earliest stages of planning, says Brian Daugbjerg Nielsen, a senior product manager who works on cold climate solutions at Vestas, the world's largest turbine manufacturer.
An assessment of the climate where a wind farm is to be located includes not just cold, but humidity and wind speed. If the wind isn't blowing, it doesn't much matter if the rotors are icy, Daugbjerg Nielsen points out. It's also a matter of assessing how much that ice—which slows the rotors and potentially stops them moving entirely—could affect production over an entire year, a percentage calculated as annual energy production (AEP).
The Nordic countries, home to vast wind farms and dark, wet winters, have a rate of around 3% to 4%, says Daugbjerg Nielsen. The extra investment in mitigating the impact of the ice is usually triggered in locations that have a 4% loss or above, he says, while 10% represents an "extremely severe" site.
Minimizing the impact of ice could mean changing where the turbines are located and how they're arranged. It could also mean installing de-icing or anti-icing products—a growing and fairly recent area of business for companies like Vestas. De-icing products, launched in 2018, include installing panels directly in the turbine rotors that warm up the rotors, keeping them ice-free.
These kinds of products aren't found just in places like Sweden and Canada; some wind farms in Greece and Turkey have them too.
"If they have mountains, obviously they'll have ice and snow up there as well," points out Daugbjerg Nielsen.
On the flip side, he notes that because water off the coasts tends to be warmer, it's less of an issue for offshore turbines.
Places like Texas, where vicious cold snaps may happen only once a decade, are difficult. Their climates are unlikely to trigger a business case for de-icing technology, even if that once-in-a-decade storm is disastrous.
A retrofit would require removing the rotors and reinstalling them—a "huge investment," he says.
Heat, hurricanes, and lightning
But for turbines—as for other pieces of energy infrastructure—it's not just cold, or even primarily extreme cold, that poses risks. All forms of extreme weather must be accounted for.
Extreme heat, with temperatures of 113 F and above, is arguably an even greater threat.
"We see [de-icing products] more as a niche, where the high-temperature market is becoming more and more a focus," says Daugbjerg Nielsen. He also says there tends to be more wind development in the regions that have greater risks of high temperatures, as opposed to ultralow temperatures.
The problems posed in extremely high temperatures are mainly that the equipment used by the turbine will overheat and shut down, stopping production, so these Vestas turbines are built with additional special cooling systems.
Turbines also must be able to function during hurricanes, he says—which can mean installing backup power systems that can be used during blackouts to allow the turbines to adjust their direction to face the wind—technology that is used in the Philippines. Similarly, turbines in Japan must be adapted to withstand extremely strong wind and severe lightning storms, Daugbjerg Nielsen says.
But while turbines must increasingly be adapted to the climate and extreme weather events they're most likely to face, what happens when freak events—snow in Texas, extreme heat in Siberia—become more common? Should a turbine be able to withstand anything that nature throws at it?
As always, it comes down to just how much developers are willing to invest to anticipate every possible scenario.
"It's also a design tradeoff," points out Daugbjerg Nielsen. "If the standard turbine incorporates everything, it might get a bit too expensive."
As with every piece of infrastructure that will be subject to a rapidly changing climate, turbines face the question of whether climate models for the coming decades can anticipate exactly what kinds of adaptations they'll need, and ultimately—how much Texas is willing to pay.