它被稱作脫碳的“最后一公里”。
當前,全球各大公司和各國都在勾勒自家的路線圖,以期待在2050年之前實現凈零排放。在這一巨大的轉變中,有一些來得較為直接,例如汽車的電動化,清潔能源并入電網。
然而說到建筑,工程師和決策者碰到了一個難題:即便是覆蓋著太陽能電板的房屋依然可能含有混凝土和鋼材,而這兩大產業就排放問題來說尤為棘手。研究人員稱,為了建造真正低碳的建筑,我們必須采用諸如氫氣、碳捕捉等突破性科技,并探索混凝土、工業產品,甚至房屋本身的新設計方式。
然而其回報是相當高的。國際能源署(International Energy Agency)稱,如果計算消耗的能源以及建造過程,各類建筑貢獻的碳排放占到了全球總量的40%。倫敦大學學院巴特利特建設與項目管理學院(University College London’s Bartlett School of Construction and Project Management)的氣候變化經濟學教授關大博(音譯)指出,如果要修建一棟真正零碳房屋、辦公樓或商場,其建造和維護所涉及的每一個行業都必須首實現脫碳。
關大博說,建造活動“會調動整個經濟供應鏈。供應鏈的排放量非常之高?!?/p>
“就像做蛋糕一樣”
麻省理工學院(MIT)混凝土可持續性中心(Concrete Sustainability Hub)的執行總監杰里米?格里高利說,提到混凝土,“唯一用量超過人力的便是水?!?/p>
混凝土的核心便是水泥,它是一種關鍵的粘合劑,能夠將沙和水轉變為全球處處可見的材料。國際能源署稱,2019年全球的水泥產量達到了41億噸,而其本身也極難脫碳。水泥必須在極高的溫度下才可以形成,而且制作水泥所需的化學反應天然就會生成二氧化碳。格里高利指出,計算上述這些碳排放,水泥貢獻的排放量高達全球總量的8%。
由于我們很難使用可再生能源來產生超高溫所需的能量密度,因此真正的低碳水泥可能得依靠碳的捕捉、儲存和利用,這樣便能夠防止二氧化碳被排入大氣,我們可以通過將其注入地下,也有可能通過將其注入混凝土本身來實現這一點。
格里高利說,還有一種方法也是可行的,那就是減少水泥用量,甚至是替換混凝土中的水泥。這些方案已然存在:古羅馬人使用火山灰作為粘合劑來制作混凝土。然而,我們也能夠使用很多種廢棄物來替代,包括燃煤電廠的副產品粉煤灰。有一些配方可以讓碳密度較傳統水泥大幅降低70%,而且成品的功效與普通水泥無異。
格里高利說:“就像做蛋糕一樣,你能夠使用全麥面粉。它依然看起來是蛋糕,只是味道略有不同。”
減排,再利用,回收
鋼鐵行業碰到的一些問題與混凝土類似。主要來講,鋼鐵生產需要高溫,而且這一過程也會釋放一些二氧化碳,只不過排放量可以少一些。鋼鐵有一個優勢,它的回收更方便,但這一點也面臨著挑戰。位于威爾士的斯旺西大學(University of Swansea)未來鋼鐵制造研究中心(Future Steel Manufacturing Research Hub)“Sustain”項目的項目經理理查德?庫里說,回收的廢鐵數量滿足不了需求,而且廢鐵的再加工需要耗能。
從物流方面來講,回收是一件具有挑戰性的事情,而且會降低金屬的品質。與混凝土行業一樣,鋼鐵行業最可行的解決方案也是碳的捕捉、利用和存儲,哪怕這些技術還沒有成為商業主流。
Sustain項目的副主任卡梅隆?普利戴爾-皮爾斯稱,我們還應該采用更好的設計,不管是建筑還是基礎設施,是的,還包括電動汽車,從而讓拆卸變得更加便捷,這樣,人們便可獲取零部件并進行回收。
他表示,另一個解決方案就是再利用。
他說:“我們當前正在非常仔細研究的一件事情是,我們對某種產品能夠了解到什么程度,以及跟蹤鋼廠在某個特定時間點會生產哪種產品,然后這種產品在其生命周期中都會經歷什么變化?!?/p>
與回收不同的是,此舉具有一個重大優勢:基本上沒有任何二氧化碳排放。
冬暖夏涼
說到設計,另一個潛在的解決方案可謂是近在咫尺:從我們以前的建筑中吸取靈感。
耶魯大學建筑生態系統中心(Yale University’s Center for Ecosystems in Architecture)的創始主任安娜?戴森說,例如,新英格蘭的傳統房屋都擁有南向窗戶,這樣便可以最大化地引入陽光,并減少冬天的黑暗時長。
她還表示,全球各地的房屋在傳統上都會按照最適合氣候的方式進行設計和建造,然而,“在20世紀期間,隨著建筑越發依賴于廉價的化石燃料,人們在房屋的方位以及氣候適配方面并未設定十分嚴格的要求?!?/p>
此外,為了管理室內溫度,房屋的形狀和尺寸都會匹配當地的氣候。在潮濕地區,房屋設計會采用充足的通風和大坡度屋頂來提升空氣的流通。在白天炎熱夜晚寒冷的干旱地區,房屋較為寬敞而且都是淺色,以反射熱量。這些原則,以及生物可降解材料的使用,例如木料、稻草、椰子殼和竹子,成為了戴森這類建筑師如今重新審視的理念。
當然,這里并沒有一勞永逸的解決辦法。戴森指出,房屋依然需要能源來照明和供熱,而且首選清潔能源。目前我們面臨的挑戰是,不僅要讓房屋能夠適應未來100年的發展,同時還得尋找各種方式來改進那些已經矗立了一個世紀的老房子。
戴森說:“我們還有很長的路要走,但我們在設計方面還有很多文章可做?!保ㄘ敻恢形木W)
譯者:馮豐
審校:夏林
它被稱作脫碳的“最后一公里”。
當前,全球各大公司和各國都在勾勒自家的路線圖,以期待在2050年之前實現凈零排放。在這一巨大的轉變中,有一些來得較為直接,例如汽車的電動化,清潔能源并入電網。
然而說到建筑,工程師和決策者碰到了一個難題:即便是覆蓋著太陽能電板的房屋依然可能含有混凝土和鋼材,而這兩大產業就排放問題來說尤為棘手。研究人員稱,為了建造真正低碳的建筑,我們必須采用諸如氫氣、碳捕捉等突破性科技,并探索混凝土、工業產品,甚至房屋本身的新設計方式。
然而其回報是相當高的。國際能源署(International Energy Agency)稱,如果計算消耗的能源以及建造過程,各類建筑貢獻的碳排放占到了全球總量的40%。倫敦大學學院巴特利特建設與項目管理學院(University College London’s Bartlett School of Construction and Project Management)的氣候變化經濟學教授關大博(音譯)指出,如果要修建一棟真正零碳房屋、辦公樓或商場,其建造和維護所涉及的每一個行業都必須首實現脫碳。
關大博說,建造活動“會調動整個經濟供應鏈。供應鏈的排放量非常之高?!?/p>
“就像做蛋糕一樣”
麻省理工學院(MIT)混凝土可持續性中心(Concrete Sustainability Hub)的執行總監杰里米?格里高利說,提到混凝土,“唯一用量超過人力的便是水?!?/p>
混凝土的核心便是水泥,它是一種關鍵的粘合劑,能夠將沙和水轉變為全球處處可見的材料。國際能源署稱,2019年全球的水泥產量達到了41億噸,而其本身也極難脫碳。水泥必須在極高的溫度下才可以形成,而且制作水泥所需的化學反應天然就會生成二氧化碳。格里高利指出,計算上述這些碳排放,水泥貢獻的排放量高達全球總量的8%。
由于我們很難使用可再生能源來產生超高溫所需的能量密度,因此真正的低碳水泥可能得依靠碳的捕捉、儲存和利用,這樣便能夠防止二氧化碳被排入大氣,我們可以通過將其注入地下,也有可能通過將其注入混凝土本身來實現這一點。
格里高利說,還有一種方法也是可行的,那就是減少水泥用量,甚至是替換混凝土中的水泥。這些方案已然存在:古羅馬人使用火山灰作為粘合劑來制作混凝土。然而,我們也能夠使用很多種廢棄物來替代,包括燃煤電廠的副產品粉煤灰。有一些配方可以讓碳密度較傳統水泥大幅降低70%,而且成品的功效與普通水泥無異。
格里高利說:“就像做蛋糕一樣,你能夠使用全麥面粉。它依然看起來是蛋糕,只是味道略有不同?!?/p>
減排,再利用,回收
鋼鐵行業碰到的一些問題與混凝土類似。主要來講,鋼鐵生產需要高溫,而且這一過程也會釋放一些二氧化碳,只不過排放量可以少一些。鋼鐵有一個優勢,它的回收更方便,但這一點也面臨著挑戰。位于威爾士的斯旺西大學(University of Swansea)未來鋼鐵制造研究中心(Future Steel Manufacturing Research Hub)“Sustain”項目的項目經理理查德?庫里說,回收的廢鐵數量滿足不了需求,而且廢鐵的再加工需要耗能。
從物流方面來講,回收是一件具有挑戰性的事情,而且會降低金屬的品質。與混凝土行業一樣,鋼鐵行業最可行的解決方案也是碳的捕捉、利用和存儲,哪怕這些技術還沒有成為商業主流。
Sustain項目的副主任卡梅隆?普利戴爾-皮爾斯稱,我們還應該采用更好的設計,不管是建筑還是基礎設施,是的,還包括電動汽車,從而讓拆卸變得更加便捷,這樣,人們便可獲取零部件并進行回收。
他表示,另一個解決方案就是再利用。
他說:“我們當前正在非常仔細研究的一件事情是,我們對某種產品能夠了解到什么程度,以及跟蹤鋼廠在某個特定時間點會生產哪種產品,然后這種產品在其生命周期中都會經歷什么變化。”
與回收不同的是,此舉具有一個重大優勢:基本上沒有任何二氧化碳排放。
冬暖夏涼
說到設計,另一個潛在的解決方案可謂是近在咫尺:從我們以前的建筑中吸取靈感。
耶魯大學建筑生態系統中心(Yale University’s Center for Ecosystems in Architecture)的創始主任安娜?戴森說,例如,新英格蘭的傳統房屋都擁有南向窗戶,這樣便可以最大化地引入陽光,并減少冬天的黑暗時長。
她還表示,全球各地的房屋在傳統上都會按照最適合氣候的方式進行設計和建造,然而,“在20世紀期間,隨著建筑越發依賴于廉價的化石燃料,人們在房屋的方位以及氣候適配方面并未設定十分嚴格的要求。”
此外,為了管理室內溫度,房屋的形狀和尺寸都會匹配當地的氣候。在潮濕地區,房屋設計會采用充足的通風和大坡度屋頂來提升空氣的流通。在白天炎熱夜晚寒冷的干旱地區,房屋較為寬敞而且都是淺色,以反射熱量。這些原則,以及生物可降解材料的使用,例如木料、稻草、椰子殼和竹子,成為了戴森這類建筑師如今重新審視的理念。
當然,這里并沒有一勞永逸的解決辦法。戴森指出,房屋依然需要能源來照明和供熱,而且首選清潔能源。目前我們面臨的挑戰是,不僅要讓房屋能夠適應未來100年的發展,同時還得尋找各種方式來改進那些已經矗立了一個世紀的老房子。
戴森說:“我們還有很長的路要走,但我們在設計方面還有很多文章可做?!保ㄘ敻恢形木W)
譯者:馮豐
審校:夏林
It's been called the "last mile" of decarbonization.
As companies and countries worldwide map out how they will hit net-zero emissions by 2050, some elements of the vast shift are relatively straightforward: Cars will go electric; power grids will adopt clean energy.
But when it comes to buildings, engineers and policymakers alike hit a hurdle: Even a house covered with solar panels is likely to contain concrete and steel—some of the most intractable sectors when it comes to emissions. To make truly low-carbon buildings, researchers say we must embrace breakthrough technology, from hydrogen to carbon capture, and explore new ways of designing concrete, industrial products, and even houses themselves.
The stakes are high. Between the energy they consume and their construction, buildings are responsible for nearly 40% of the world's emissions, according to the International Energy Agency. To truly produce a zero carbon house, office, or shop, every industry involved in its construction and maintenance must be decarbonized first, says Dabo Guan, a professor of climate change economics at University College London's Bartlett School of Construction and Project Management.
When buildings are constructed, "they trigger the whole economic supply chain," says Guan. "And the emissions of the supply chain are very big."
“Like making a cake”
When it comes to concrete, "the only thing we use more as humans is water," says Jeremy Gregory, executive director of MIT's Concrete Sustainability Hub.
At the heart of concrete is cement: the key binding agent that turns sand and water into one of the world's most ubiquitous materials. In 2019, the world produced roughly 4.1 billion tons of cement, according to the IEA. It's also extremely hard to decarbonize. Cement itself must be formed at extremely high temperatures and is the product of a chemical process that naturally produces carbon dioxide. Collectively, it is responsible for up to 8% of global emissions, says Gregory.
Because it's extremely difficult to use renewable energy to produce the energy intensity needed for ultrahigh temperatures, truly low-carbon cement will likely rely on carbon capture, storage, and utilization, which prevents CO2 from being released into the atmosphere, either by injecting it into the ground or—potentially—into the concrete itself.
There is also another approach that could help, says Gregory: diluting, or even replacing, the cement in concrete. These options already exist: The ancient Romans used volcanic ash as a binding agent to make concrete. But it's possible to use a large number of waste products, including fly ash—a by-product from coal plants. Some blends can reduce the carbon intensity by as much as 70% compared to conventional cement and will produce a product that's just as good.
It's "sort of like making a cake," says Gregory. "You can use whole wheat flour. It'll still look like a cake. It'll just taste a little bit different."
Reduce, reuse, recycle
Steel struggles with some of the same problems as concrete. Mainly, it must be produced at high temperatures, and, to a lesser degree, some CO2 also results from the process. Steel has one advantage—it can more easily be recycled—but that, too, has challenges. There is not enough to meet demand, and reprocessing requires energy, says Richard Curry, a program manager at Sustain, the Future Steel Manufacturing Research Hub based at the University of Swansea in Wales.
Logistically, recycling can be challenging and degrade the quality of the metal. As with concrete, the most feasible solutions are carbon capture, utilization, and storage—even if those are not yet commercially mainstream.
Embracing better design—from buildings to infrastructure to, yes, electric cars—to make them easier to disassemble so that their parts can be accessed and recycled could help, says Cameron Pleydell-Pearce, Sustain's deputy director.
Another option, he says, is reusing.
"One of the things that we're looking at in a very great level of detail is the degree to which we can understand which product and trace which product is coming out of a steel mill at a particular point, and then what happens to it as it goes through its life cycle," he says.
Unlike even recycling, that would offer a major advantage: It comes with almost no CO2 emissions at all.
Warm in winter, cool in summer
When it comes to design, there's another potential solution staring us in the face: drawing inspiration from what our buildings used to look like.
A traditional house in New England, for example, would have had south-facing windows, maximizing the sunshine and minimizing the darkness in winter, says Anna Dyson, the founding director of Yale University's Center for Ecosystems in Architecture.
Houses all over the world have traditionally been designed and built to best work with the climate, she adds, but "over the course of the 20th century, as buildings became more and more reliant on cheap fossil fuels, then it wasn't so required to be really, really careful about orientation and working with climate."
Also, to manage the indoor temperatures, houses were built in shapes and sizes that suited their climates. In humid locations, home designs included ample ventilation and steep roofs to enhance air flow. In arid climates with hot days and cold nights, houses were roomy and light-colored to reflect heat. Those principles, along with making use of biodegradable materials, from timber to straw to coconut husks and bamboo, are ideas that some architects like Dyson are now looking back to.
Of course there are no silver bullets. Houses still need energy for lights and heating, preferably clean energy, Dyson points out. And now we face the prospect of not just making houses that are suited to the next 100 years, but also finding ways to retrofit the ones that have already lasted a century.
"We've got a long way to go," says Dyson. "But we've got a lot that we can do with design."