
2024年是AI從實驗轉變為主流商業推動力的一年,而2025年將是它開始在工業領域掀起大規模革命的一年。雖然AI技術尚未成熟,但它已經足夠先進,可以幫助實現工業領域三個最重要的目標——提高生產能力、實現可用性最大化和提升人員技能。
確保我們的流程更高效、機器更努力地運行、人員更聰明地工作,這是有智慧的領導者(和精明的投資者)應該每天都關注的一個永恒話題。雖然你可以單獨解決每個挑戰,但聰明的做法是通過加速從自動化到自主化的轉變來共同解決這些挑戰,這也是我認為工業界在未來一年準備做的事情。
自動化 vs. 自主化
雖然“自動化”和“自主化”聽起來非常相似,但它們描述的是兩種截然不同的狀態。在自動化設施中,工業流程由具有預編程指令和確定性結果的機器控制。而在自主化設施中,系統或機器可以根據新條件、變化的環境或意外問題提供建議和決策。
兩者都需要熟練工人的互動和干預,但工業自主化的美妙之處在于機器可以執行所有任務,并作為博學的助理,增強團隊中人類的能力。兩者的關鍵區別是AI,這也是自動化和自主化之間的區分因素。
以實現可用性最大化的需求為例,這是AI的核心優勢之一。通過訪問過去數年甚至數十年與設備性能和服務相關的歷史數據,AI可以分析數據并提供建議,以延長設備的使用壽命或進行最有效的設備維修。這意味著你將面臨更少的計劃外設備停機,從而降低成本,同時最大程度提高生產能力。
實現目標面臨的挑戰
只有在數據能夠被帶到現場并實時投入使用時,才能實現這個目標。AI與另外兩項相對較新的創新相結合,激發了一個“技術三重奏”,可以將工業AI從理論變為現實。
這三項技術分別是云計算,我們可以在云端存儲數據,并支持所有用戶訪問;5G,它能夠低延遲地傳輸數據以支持實時操作和決策;以及AI,它支持人類以可訪問的方式查詢數據并在邊緣解決問題。這三項技術的結合使我們能夠將AI投入實際應用,這是真正的工業AI革命。
想象一下,一家偏遠的煉油廠需要熟練操作人員來解決問題或提高產量,或者一家公司擁有多個商業建筑,需要根據入住情況動態管理其設施、提高資產壽命并滿足新的可持續性報告要求。通過這三項技術,這家煉油廠或者公司都可以依靠歷史數據和在邊緣嵌入AI的工具來改善運營,并實現真正的預測性維護。這將提高煉油廠的生產率,并改善所有建筑物中租戶的舒適度、安全性和保障。此外,工人使用AI賦能的工具,可以用前幾代人的經驗來增強他們的技能,使只有3到5年背景的工人能夠像經驗豐富的老手一樣操作。
協作優勢
在從業35年間,我學到的一個重要教訓是,成功的合作伙伴關系往往可以將結果從優秀提升到卓越。在霍尼韋爾(Honeywell),我們擁有本領域的知識,對解決航空航天、能源和建筑基礎設施領域的問題有深刻理解。通過與在云計算和5G領域的技術創新公司合作應用這些知識,我們能夠開發出革命性的新產品和新服務。
這就是我們在整個技術生態系統中建立合作伙伴關系的目標,包括最近宣布的與高通(Qualcomm)和谷歌(Google)的合作。該領域的其他公司也做了同樣的事情:人們認識到團隊合作的好處,同時每一個合作伙伴都在竭盡全力各展所長。
與工業客戶的合作同樣重要。在本行業中工作了幾十年后,我學到的一件事是,當你只盯住某個問題開發解決方案時,這個解決方案往往不會被采用。公司閉門造車開發通用解決方案,而不是利用這些資源幫助客戶開發具體方案,解決他們真正面臨的問題,結果就是浪費了無數的時間和金錢。后者會刺激投資,并且開發出的技術經常可以大規模應用。
今年的情況
工業目前正處于一個轉折點,我們可以利用當今技術的力量,大幅提高我們的工作效率和盈利能力。我們清楚地知道,我們需要讓流程變得更高效、機器更努力地運行、人員更聰明地工作,而云計算、5G和AI的技術三重奏可以實現這一目標。這就是為什么我樂觀地認為,2025年,我們將真正開始大規模實現工業自主化,每一天都將是運行效率最高的一天,每個人都將是世界領先的專家。(財富中文網)
柯偉茂現任霍尼韋爾首席執行官兼董事長。
Fortune.com上發表的評論文章中表達的觀點,僅代表作者本人的觀點,不能代表《財富》雜志的觀點和立場。
翻譯:劉進龍
審校:汪皓
2024年是AI從實驗轉變為主流商業推動力的一年,而2025年將是它開始在工業領域掀起大規模革命的一年。雖然AI技術尚未成熟,但它已經足夠先進,可以幫助實現工業領域三個最重要的目標——提高生產能力、實現可用性最大化和提升人員技能。
確保我們的流程更高效、機器更努力地運行、人員更聰明地工作,這是有智慧的領導者(和精明的投資者)應該每天都關注的一個永恒話題。雖然你可以單獨解決每個挑戰,但聰明的做法是通過加速從自動化到自主化的轉變來共同解決這些挑戰,這也是我認為工業界在未來一年準備做的事情。
自動化 vs. 自主化
雖然“自動化”和“自主化”聽起來非常相似,但它們描述的是兩種截然不同的狀態。在自動化設施中,工業流程由具有預編程指令和確定性結果的機器控制。而在自主化設施中,系統或機器可以根據新條件、變化的環境或意外問題提供建議和決策。
兩者都需要熟練工人的互動和干預,但工業自主化的美妙之處在于機器可以執行所有任務,并作為博學的助理,增強團隊中人類的能力。兩者的關鍵區別是AI,這也是自動化和自主化之間的區分因素。
以實現可用性最大化的需求為例,這是AI的核心優勢之一。通過訪問過去數年甚至數十年與設備性能和服務相關的歷史數據,AI可以分析數據并提供建議,以延長設備的使用壽命或進行最有效的設備維修。這意味著你將面臨更少的計劃外設備停機,從而降低成本,同時最大程度提高生產能力。
實現目標面臨的挑戰
只有在數據能夠被帶到現場并實時投入使用時,才能實現這個目標。AI與另外兩項相對較新的創新相結合,激發了一個“技術三重奏”,可以將工業AI從理論變為現實。
這三項技術分別是云計算,我們可以在云端存儲數據,并支持所有用戶訪問;5G,它能夠低延遲地傳輸數據以支持實時操作和決策;以及AI,它支持人類以可訪問的方式查詢數據并在邊緣解決問題。這三項技術的結合使我們能夠將AI投入實際應用,這是真正的工業AI革命。
想象一下,一家偏遠的煉油廠需要熟練操作人員來解決問題或提高產量,或者一家公司擁有多個商業建筑,需要根據入住情況動態管理其設施、提高資產壽命并滿足新的可持續性報告要求。通過這三項技術,這家煉油廠或者公司都可以依靠歷史數據和在邊緣嵌入AI的工具來改善運營,并實現真正的預測性維護。這將提高煉油廠的生產率,并改善所有建筑物中租戶的舒適度、安全性和保障。此外,工人使用AI賦能的工具,可以用前幾代人的經驗來增強他們的技能,使只有3到5年背景的工人能夠像經驗豐富的老手一樣操作。
協作優勢
在從業35年間,我學到的一個重要教訓是,成功的合作伙伴關系往往可以將結果從優秀提升到卓越。在霍尼韋爾(Honeywell),我們擁有本領域的知識,對解決航空航天、能源和建筑基礎設施領域的問題有深刻理解。通過與在云計算和5G領域的技術創新公司合作應用這些知識,我們能夠開發出革命性的新產品和新服務。
這就是我們在整個技術生態系統中建立合作伙伴關系的目標,包括最近宣布的與高通(Qualcomm)和谷歌(Google)的合作。該領域的其他公司也做了同樣的事情:人們認識到團隊合作的好處,同時每一個合作伙伴都在竭盡全力各展所長。
與工業客戶的合作同樣重要。在本行業中工作了幾十年后,我學到的一件事是,當你只盯住某個問題開發解決方案時,這個解決方案往往不會被采用。公司閉門造車開發通用解決方案,而不是利用這些資源幫助客戶開發具體方案,解決他們真正面臨的問題,結果就是浪費了無數的時間和金錢。后者會刺激投資,并且開發出的技術經常可以大規模應用。
今年的情況
工業目前正處于一個轉折點,我們可以利用當今技術的力量,大幅提高我們的工作效率和盈利能力。我們清楚地知道,我們需要讓流程變得更高效、機器更努力地運行、人員更聰明地工作,而云計算、5G和AI的技術三重奏可以實現這一目標。這就是為什么我樂觀地認為,2025年,我們將真正開始大規模實現工業自主化,每一天都將是運行效率最高的一天,每個人都將是世界領先的專家。(財富中文網)
柯偉茂現任霍尼韋爾首席執行官兼董事長。
Fortune.com上發表的評論文章中表達的觀點,僅代表作者本人的觀點,不能代表《財富》雜志的觀點和立場。
翻譯:劉進龍
審校:汪皓
Just as 2024 was the year AI went from an experiment to a mainstream business enabler, 2025 will be the year it begins to revolutionize the industrial sector at scale. While the technology is still maturing, it has sufficiently advanced to help address the industrial sector’s three most important objectives—increasing throughput, maximizing availability, and upskilling people.
The need to make certain our processes work more efficiently, our machines work harder, and our people work smarter is a universal constant that wise leaders (and savvy investors) should focus on every day. While you can approach each of these challenges in isolation, the smart play is to tackle them together by accelerating the move from automation to autonomy, and that is what I believe industry is ready to do in the year ahead.
Automation vs. autonomy
While “automation” and “autonomy” sound remarkably similar, they describe two very different states. In an automated facility, machines with pre-programmed instructions and deterministic outcomes govern the industrial process. In an autonomous facility, systems or machines can make recommendations and decisions that adapt to new conditions, changing environments, or unanticipated problems.
Both require skilled human interaction and intervention, but the beauty of industrial autonomous operation is that the machines are there to run everything, and serve as learned assistants, augmenting the humans on the team. The key difference—the element that jumps the divide between automated and autonomous operations—is artificial intelligence.
Consider the need to maximize availability—a core benefit of AI. By accessing years or even decades of historical data associated with equipment performance and service records, AI can analyze the data and provide recommendations that will extend the life of equipment or repair it most effectively. This means you face fewer unscheduled equipment outages, which reduces cost while maximizing throughput.
The delivery challenge
This only works if that data can be brought to the field and put to work in real time. The combination of AI with two other relatively recent innovations has sparked a “technology trifecta” that turns the theory of industrial AI into reality.
That trifecta includes the cloud, where we can store data and make it accessible to all users; 5G, which enables low-latency transmission of that data to power real-time operations and decision-making; and AI, which enables humans to interrogate the data in accessible ways and solve problems at the edge. This trifecta, which allows us to put AI to practical use, is the true industrial AI revolution.
Imagine a remote refinery in need of skilled operational staff to solve an issue or improve yield, or a company that owns multiple commercial buildings that needs to dynamically manage their facilities based on occupancy, improve their asset life, and meet new sustainability reporting requirements. With the trifecta, both can lean on historical data and AI-embedded tools at the edge to improve operations and enable true predictive maintenance. This leads to increased productivity at the refinery, and improved comfort, safety, and security for the tenants in all the buildings. In addition, by putting AI-enabled tools in the hands of workers, you can augment their skills with the experience of generations of others who have gone before them—enabling a worker with 3 to 5 years of background to operate as though they are a seasoned veteran.
The collaborative advantage
A significant lesson I’ve learned in my 35 years in this business is that successful partnerships can frequently take results from good to great. At Honeywell we have domain knowledge and a deep understanding of how to solve problems in aerospace, energy, and the building infrastructure sectors. By applying that knowledge in partnership with companies pioneering technology in the cloud and 5G space, we are able to develop revolutionary new products and services.
That’s the goal of the partnerships we’ve formed across the technology ecosystem, including recently announced collaborations with Qualcomm and Google. Others in this space have done the same—recognizing the benefits of teaming, while doing what each partner does best.
Of equal importance is a partnership with our industrial customers. One of the things I’ve learned over decades of work in this environment is that when you develop a solution that chases a problem, that solution is generally not adopted. Countless hours and dollars have been wasted by companies developing universally accessible solutions in a box, instead of using those resources to help a customer shape a solution that solves something real and present to them. The latter stimulates investment, and most often that technology scales.
The case for this year
We are at an inflection point in industry where we can significantly enhance our ability to work productively and profitably by harnessing the power of today’s technologies. We know we need our processes to work more efficiently, our machines to work harder, and our people to work smarter—and we have the technology trifecta of the cloud, 5G, and AI that can make it happen. That’s why I’m optimistic that 2025 is the year we truly begin the move, at scale, to industrial autonomy, where every day is your best day of operation, and every person is a world-leading expert.
Vimal Kapur is CEO and chairman of Honeywell.
The opinions expressed in Fortune.com commentary pieces are solely the views of their authors and do not necessarily reflect the opinions and beliefs of Fortune.