在投資界有一種常見的說法,那就是在淘金熱期間真正賺到錢的人并不是礦工,而是那些向礦工出售開采所需的鎬頭和鐵鍬的企業家。講述這個故事的投資者通常會提到加州第一位百萬富翁的故事,他是一位名叫塞繆爾·布蘭南(Samuel Brannan)的商人和報紙出版商,在19世紀40年代和50年代以高價向淘金者出售設備和物資,賺取了大部分財富。有些人甚至會提到李維·斯特勞斯(Levi Strauss),這位德國出生的商人將精美商品進口到舊金山,當然也包括藍色牛仔褲。施特勞斯從未在采礦上花費一分一秒時間,但他確實從那個時代的淘金熱中獲得了豐厚的利潤。
這種“鎬頭和鐵鍬”的說法無疑是有道理的,在當今更關注科技的“淘金熱”時代,投資者的決策仍受這種說法的影響,但這也只是故事的一部分。雖然第一批從淘金熱中獲利的是少數幸運的礦工和那些向他們出售物資和設備的人,但那個時代繁榮所產生的全面影響波及范圍廣,利潤在全球范圍內分配。淘金熱為第一條橫貫大陸的鐵路提供了資金,帶動加州農業(“綠色黃金”)實現繁榮,加速工業化進程,增加國際貿易,并催生運輸和通信創新。
關鍵在于:對于投資者和全球經濟而言,革命性發現或創新都是千載難逢的機遇,其真正的標志往往是長期網絡效應;在鎬頭和鐵鍬賣家已經賺到錢之后產生的積極的二級和三級影響。18世紀的運河繁榮時期、以及90年代末和21世紀初的互聯網時代,都是如此。
隨著這十年的人工智能熱潮與淘金熱的相提并論,投資者多年來一直在尋找這些網絡效應的證據,試圖將炒作與現實區分開來。許多相當重要的研究和預測都表示,人工智能可以提高生產率,迎來創新時代,甚至可以長期增加國內生產總值,但到目前為止,只有少數幾家公司真正從人工智能熱潮中獲利。
英偉達(Nvidia)和阿斯麥(ASML)等科技巨頭出售人工智能革命的“鎬頭和鐵鍬”,即人工智能得以運行的底層技術,它們的表現持續優于其他公司,而且似乎有望持續這一勢頭。但在這些巨頭之外,關于人工智能提高生產率和促進經濟發展的實際證據卻更為微妙。
然而,思愛普可能是人工智能影響日益突出的一個例子。這家總部位于德國沃爾多夫的科技巨頭擁有約10.8萬名員工,市值達2250億美元,是全球領先的企業資源規劃(以下簡稱ERP)軟件供應商,主要為大型企業提供后臺辦公引擎。
思愛普的ERP軟件正日益轉向云計算,有助于供應鏈管理、會計、人力資源、支出和許多其他業務運營。今年1月,思愛普的主要投資者紅杉基金(Sequoia Fund)的投資顧問和分銷商Ruane Cunniff LP在致股東的年度信中解釋說,“對于在物理世界制造或移動產品的跨國企業來說,思愛普幾乎是不二之選。”
盡管思愛普不是一家人工智能公司,也不出售支持人工智能的鎬頭和鐵鍬,但卻間接和直接地從這項技術的興起中受益。思愛普首席財務官多米尼克·阿薩姆(Dominik Asam)在接受《財富》雜志采訪時解釋說,人工智能的繁榮有助于推動公司實現增長,并表示他將致力于利用這項技術提高生產率,削減公司內部成本。
在談到人工智能的炒作與現實問題時,阿薩姆也表示看好人工智能的前景。他在接受《財富》雜志采訪時表示:"這不是曇花一現,也不是炒作,而是科技行業最大的顛覆性技術之一。”
思愛普案例研究:人工智能的增量收益和潛在隱患
鞏固云業務轉型成果
在思愛普可以看到的第一項網絡效益,可能會證明人工智能熱潮的持久力,即企業向云ERP服務(基于云計算技術的企業資源規劃)轉型。阿薩姆表示,人工智能已經助力思愛普將許多ERP客戶從本地部署計算轉變為基于云計算技術的計算,這意味著對該公司云業務的巨大需求。
他在接受《財富》雜志采訪時表示:“人工智能確實正在改變我們從本地部署計算到基于云計算技術的計算的最后一批懷疑論者。他們明白我們必須轉向云計算,而且考慮到創新的發展速度,本地部署模式行不通。這一速度太慢,無法消耗最具生產力優勢的系統資源。”
阿薩姆表示,用于ERP的人工智能系統的快速發展意味著公司需要不斷更新其內部軟件,而這無法在不花費高昂的成本情況下現場完成。瑞銀集團(UBS)分析師邁克爾 布里斯特(Michael Briest)在接受《財富》雜志采訪時支持這一觀點,認為人工智能已成為許多公司ERP軟件“實現現代化的催化劑”,思愛普的云ERP業務將從中受益。思愛普4月22日發布的財報顯示,第一季度云收入增長了24%,當前云積壓(CCB)增長了27%,創歷史最快紀錄。云積壓的增長數字代表來年云收入(客戶已簽訂合同),分析師將其視為衡量潛在需求的指標。
新收入機會
盡管思愛普并不是一家純粹的人工智能公司,但和現在的許多科技公司一樣,也在增加人工智能服務,以提高收入,并防止客戶跳槽到競爭對手那里。作為業務重組的一部分,思愛普首席執行官克里斯蒂安·克萊因今年1月宣布,公司將向商業人工智能部門投資11億美元,并為客戶提供更多人工智能解決方案。
該公司目前提供一系列人工智能產品,可以幫助完成從任務自動化到跟蹤銷售業績、客戶洞察等各個方面的工作。阿薩姆表示,思愛普的人工智能產品還將幫助不同的業務部門(例如會計和人力資源部門)更好地進行溝通,以消除招聘、在職人員工薪名冊或員工退休等操作中的失誤。“例如,如果一名員工離開公司,你必須確保自動刪除其在財務系統中的所有訪問權限,否則就會出現控制故障,審計員就會過來說,‘那家伙可能篡改了數據。’”他解釋說,并認為人工智能將有助于防止這些問題的發生。思愛普甚至提供了一款名為Joule的“人工智能副駕”,將幫助梳理和解釋各種應用程序中的數據。
阿薩姆認為思愛普的客戶(以供參考,思愛普的客戶創造了全球商業總額的87%)需要大量數據才能有效訓練人工智能模型,而只有少數幾家關鍵公司可以提供這些數據。首席財務官表示,思愛普已獲得"絕大部分"客戶的同意,可以使用他們的數據來訓練人工智能模型,這為他們在軟件中提供人工智能服務提供了巨大機會。
盡管如此,思愛普還未將其人工智能收入單獨劃分為一個類別,而且該公司目前的人工智能產品在短期內可能不會對營收做出顯著貢獻。瑞銀集團的布里斯特認為,商業人工智能部門是“真正的機會”所在,但可能只是在短期內帶來“增量”收入增長。
他說:“如今,在我看來,這更多的是為了推動云遷移。當然,這也有助于客戶決定推進現代化進程。但這是一個獨立的收入項目嗎?讓我們拭目以待。我認為還需要更多的證據。”
不過,從長遠來看,阿薩姆看好人工智能提升思愛普業績的潛力。他說:“我們正在開發這些(人工智能)流程,目前有大約30個用例,另外100個用例將在今年年底開發出來,推向一般市場。隨著時間的推移,我們會加快步伐。因此,還需要一段時間,你才能真正發現轉變。但當發生轉變時,就會非常顯著。”
提高生產率和利潤率
思愛普也在內部實施人工智能,以節省成本和提高員工生產率,并在宣布重組后,逐步加大人工智能實施力度。阿薩姆表示,最終目標是在未來幾年利用人工智能實現“成本增長與收入增長脫鉤”,并在不大幅增加員工人數的情況下提高生產率。他對《財富》雜志表示:“坦率地講,在某些領域,我們正在用機器處理能力取代人類處理能力。如果通脹率沒有每年大幅上升,機器處理能力實際上更具可擴展性。”
以差旅及費用管理服務SAP Concur為例,思愛普已經部署了一個人工智能系統來響應費用請求。阿薩姆解釋說:“該引擎基本上是在復制或取代以前(由人類)完成的工作,即一些人負責檢查違反規定的差旅和費用報銷。”
目前,員工成本占思愛普成本基礎的69%,因此人工智能降低相關成本可能會帶來益處。思愛普首席執行官克里斯蒂安·克萊因在公司季度財報電話會議上也強調了多個利用人工智能在內部節省“數億美元”成本的機會。
瑞銀集團的布里斯特指出,人工智能降低勞動力成本的能力最終可能對整個軟件行業產生重要影響。他說:"縱觀軟件行業,每天晚上幾乎有一半的收入以工資的形式流失。相對于資本密集型行業而言,這一比例相當高。很多人才都在這些崗位上工作,如銷售、開發、財務和會計,因此,這些崗位都將發生轉變。”
對于思愛普而言,布里斯特認為,部分勞動力成本的降低"將帶來利潤增長,因為其產品粘性很高",這意味著客戶不太可能因為相關成本而轉向競爭對手。
人工智能給收益真正帶來影響尚待時日
思愛普近期的表現和未來計劃證明,人工智能可以增加企業收入、降低成本和提高生產率,但這項技術的真正拐點可能尚未到來。對于思愛普而言,瑞銀集團的布里斯特警告稱,隨著人工智能收入的增長,“競爭對手不會停滯不前”。他說:“如今出現一波創新潮,初創公司會被高盈利能力所吸引。隨著時間的推移,很多產品因競爭過于激烈而逐漸被其他更具競爭力的產品所取代。”
不過,布里斯特表示,盡管這對思愛普來說可能不是好消息,但"可能對全球經濟有利"。畢竟,競爭激烈通常會帶來創新、降低成本和提高生產率。
此外,雖然已經有證據表明人工智能對思愛普的業務產生了直接和間接的積極影響,但就連阿薩姆也對《財富》雜志表示,人工智能還需要更多的時間才能像許多急切的投資者所期待的那樣提高收益數字。以思愛普的規模而言,即使人工智能能夠節省數億美元的成本或帶來數億美元的收入增長,也只能對其利潤產生微小的影響。
他預計,像許多革命一樣,人工智能的影響在一段時間內不會太明顯,但很快就會完全顯現出來。他說:“事情實際上正在發生比人們想象的大得多的變化。”
阿薩姆將人工智能的興起與互聯網泡沫相提并論,當時投資者對互聯網的熱情促使一些無利可圖的科技股瘋狂飆升,然后出現崩盤,但最終互聯網還是帶來了收益。阿薩姆說:“如今,這一生態系統的價值是當時人們認為的數倍。所以我認為這(人工智能)將遵循類似的模式。這就是為什么思愛普全力押注人工智能。”(財富中文網)
譯者:中慧言-王芳
在投資界有一種常見的說法,那就是在淘金熱期間真正賺到錢的人并不是礦工,而是那些向礦工出售開采所需的鎬頭和鐵鍬的企業家。講述這個故事的投資者通常會提到加州第一位百萬富翁的故事,他是一位名叫塞繆爾·布蘭南(Samuel Brannan)的商人和報紙出版商,在19世紀40年代和50年代以高價向淘金者出售設備和物資,賺取了大部分財富。有些人甚至會提到李維·斯特勞斯(Levi Strauss),這位德國出生的商人將精美商品進口到舊金山,當然也包括藍色牛仔褲。施特勞斯從未在采礦上花費一分一秒時間,但他確實從那個時代的淘金熱中獲得了豐厚的利潤。
這種“鎬頭和鐵鍬”的說法無疑是有道理的,在當今更關注科技的“淘金熱”時代,投資者的決策仍受這種說法的影響,但這也只是故事的一部分。雖然第一批從淘金熱中獲利的是少數幸運的礦工和那些向他們出售物資和設備的人,但那個時代繁榮所產生的全面影響波及范圍廣,利潤在全球范圍內分配。淘金熱為第一條橫貫大陸的鐵路提供了資金,帶動加州農業(“綠色黃金”)實現繁榮,加速工業化進程,增加國際貿易,并催生運輸和通信創新。
關鍵在于:對于投資者和全球經濟而言,革命性發現或創新都是千載難逢的機遇,其真正的標志往往是長期網絡效應;在鎬頭和鐵鍬賣家已經賺到錢之后產生的積極的二級和三級影響。18世紀的運河繁榮時期、以及90年代末和21世紀初的互聯網時代,都是如此。
隨著這十年的人工智能熱潮與淘金熱的相提并論,投資者多年來一直在尋找這些網絡效應的證據,試圖將炒作與現實區分開來。許多相當重要的研究和預測都表示,人工智能可以提高生產率,迎來創新時代,甚至可以長期增加國內生產總值,但到目前為止,只有少數幾家公司真正從人工智能熱潮中獲利。
英偉達(Nvidia)和阿斯麥(ASML)等科技巨頭出售人工智能革命的“鎬頭和鐵鍬”,即人工智能得以運行的底層技術,它們的表現持續優于其他公司,而且似乎有望持續這一勢頭。但在這些巨頭之外,關于人工智能提高生產率和促進經濟發展的實際證據卻更為微妙。
然而,思愛普可能是人工智能影響日益突出的一個例子。這家總部位于德國沃爾多夫的科技巨頭擁有約10.8萬名員工,市值達2250億美元,是全球領先的企業資源規劃(以下簡稱ERP)軟件供應商,主要為大型企業提供后臺辦公引擎。
思愛普的ERP軟件正日益轉向云計算,有助于供應鏈管理、會計、人力資源、支出和許多其他業務運營。今年1月,思愛普的主要投資者紅杉基金(Sequoia Fund)的投資顧問和分銷商Ruane Cunniff LP在致股東的年度信中解釋說,“對于在物理世界制造或移動產品的跨國企業來說,思愛普幾乎是不二之選。”
盡管思愛普不是一家人工智能公司,也不出售支持人工智能的鎬頭和鐵鍬,但卻間接和直接地從這項技術的興起中受益。思愛普首席財務官多米尼克·阿薩姆(Dominik Asam)在接受《財富》雜志采訪時解釋說,人工智能的繁榮有助于推動公司實現增長,并表示他將致力于利用這項技術提高生產率,削減公司內部成本。
在談到人工智能的炒作與現實問題時,阿薩姆也表示看好人工智能的前景。他在接受《財富》雜志采訪時表示:"這不是曇花一現,也不是炒作,而是科技行業最大的顛覆性技術之一。”
思愛普案例研究:人工智能的增量收益和潛在隱患
鞏固云業務轉型成果
在思愛普可以看到的第一項網絡效益,可能會證明人工智能熱潮的持久力,即企業向云ERP服務(基于云計算技術的企業資源規劃)轉型。阿薩姆表示,人工智能已經助力思愛普將許多ERP客戶從本地部署計算轉變為基于云計算技術的計算,這意味著對該公司云業務的巨大需求。
他在接受《財富》雜志采訪時表示:“人工智能確實正在改變我們從本地部署計算到基于云計算技術的計算的最后一批懷疑論者。他們明白我們必須轉向云計算,而且考慮到創新的發展速度,本地部署模式行不通。這一速度太慢,無法消耗最具生產力優勢的系統資源。”
阿薩姆表示,用于ERP的人工智能系統的快速發展意味著公司需要不斷更新其內部軟件,而這無法在不花費高昂的成本情況下現場完成。瑞銀集團(UBS)分析師邁克爾 布里斯特(Michael Briest)在接受《財富》雜志采訪時支持這一觀點,認為人工智能已成為許多公司ERP軟件“實現現代化的催化劑”,思愛普的云ERP業務將從中受益。思愛普4月22日發布的財報顯示,第一季度云收入增長了24%,當前云積壓(CCB)增長了27%,創歷史最快紀錄。云積壓的增長數字代表來年云收入(客戶已簽訂合同),分析師將其視為衡量潛在需求的指標。
新收入機會
盡管思愛普并不是一家純粹的人工智能公司,但和現在的許多科技公司一樣,也在增加人工智能服務,以提高收入,并防止客戶跳槽到競爭對手那里。作為業務重組的一部分,思愛普首席執行官克里斯蒂安·克萊因今年1月宣布,公司將向商業人工智能部門投資11億美元,并為客戶提供更多人工智能解決方案。
該公司目前提供一系列人工智能產品,可以幫助完成從任務自動化到跟蹤銷售業績、客戶洞察等各個方面的工作。阿薩姆表示,思愛普的人工智能產品還將幫助不同的業務部門(例如會計和人力資源部門)更好地進行溝通,以消除招聘、在職人員工薪名冊或員工退休等操作中的失誤。“例如,如果一名員工離開公司,你必須確保自動刪除其在財務系統中的所有訪問權限,否則就會出現控制故障,審計員就會過來說,‘那家伙可能篡改了數據。’”他解釋說,并認為人工智能將有助于防止這些問題的發生。思愛普甚至提供了一款名為Joule的“人工智能副駕”,將幫助梳理和解釋各種應用程序中的數據。
阿薩姆認為思愛普的客戶(以供參考,思愛普的客戶創造了全球商業總額的87%)需要大量數據才能有效訓練人工智能模型,而只有少數幾家關鍵公司可以提供這些數據。首席財務官表示,思愛普已獲得"絕大部分"客戶的同意,可以使用他們的數據來訓練人工智能模型,這為他們在軟件中提供人工智能服務提供了巨大機會。
盡管如此,思愛普還未將其人工智能收入單獨劃分為一個類別,而且該公司目前的人工智能產品在短期內可能不會對營收做出顯著貢獻。瑞銀集團的布里斯特認為,商業人工智能部門是“真正的機會”所在,但可能只是在短期內帶來“增量”收入增長。
他說:“如今,在我看來,這更多的是為了推動云遷移。當然,這也有助于客戶決定推進現代化進程。但這是一個獨立的收入項目嗎?讓我們拭目以待。我認為還需要更多的證據。”
不過,從長遠來看,阿薩姆看好人工智能提升思愛普業績的潛力。他說:“我們正在開發這些(人工智能)流程,目前有大約30個用例,另外100個用例將在今年年底開發出來,推向一般市場。隨著時間的推移,我們會加快步伐。因此,還需要一段時間,你才能真正發現轉變。但當發生轉變時,就會非常顯著。”
提高生產率和利潤率
思愛普也在內部實施人工智能,以節省成本和提高員工生產率,并在宣布重組后,逐步加大人工智能實施力度。阿薩姆表示,最終目標是在未來幾年利用人工智能實現“成本增長與收入增長脫鉤”,并在不大幅增加員工人數的情況下提高生產率。他對《財富》雜志表示:“坦率地講,在某些領域,我們正在用機器處理能力取代人類處理能力。如果通脹率沒有每年大幅上升,機器處理能力實際上更具可擴展性。”
以差旅及費用管理服務SAP Concur為例,思愛普已經部署了一個人工智能系統來響應費用請求。阿薩姆解釋說:“該引擎基本上是在復制或取代以前(由人類)完成的工作,即一些人負責檢查違反規定的差旅和費用報銷。”
目前,員工成本占思愛普成本基礎的69%,因此人工智能降低相關成本可能會帶來益處。思愛普首席執行官克里斯蒂安·克萊因在公司季度財報電話會議上也強調了多個利用人工智能在內部節省“數億美元”成本的機會。
瑞銀集團的布里斯特指出,人工智能降低勞動力成本的能力最終可能對整個軟件行業產生重要影響。他說:"縱觀軟件行業,每天晚上幾乎有一半的收入以工資的形式流失。相對于資本密集型行業而言,這一比例相當高。很多人才都在這些崗位上工作,如銷售、開發、財務和會計,因此,這些崗位都將發生轉變。”
對于思愛普而言,布里斯特認為,部分勞動力成本的降低"將帶來利潤增長,因為其產品粘性很高",這意味著客戶不太可能因為相關成本而轉向競爭對手。
人工智能給收益真正帶來影響尚待時日
思愛普近期的表現和未來計劃證明,人工智能可以增加企業收入、降低成本和提高生產率,但這項技術的真正拐點可能尚未到來。對于思愛普而言,瑞銀集團的布里斯特警告稱,隨著人工智能收入的增長,“競爭對手不會停滯不前”。他說:“如今出現一波創新潮,初創公司會被高盈利能力所吸引。隨著時間的推移,很多產品因競爭過于激烈而逐漸被其他更具競爭力的產品所取代。”
不過,布里斯特表示,盡管這對思愛普來說可能不是好消息,但"可能對全球經濟有利"。畢竟,競爭激烈通常會帶來創新、降低成本和提高生產率。
此外,雖然已經有證據表明人工智能對思愛普的業務產生了直接和間接的積極影響,但就連阿薩姆也對《財富》雜志表示,人工智能還需要更多的時間才能像許多急切的投資者所期待的那樣提高收益數字。以思愛普的規模而言,即使人工智能能夠節省數億美元的成本或帶來數億美元的收入增長,也只能對其利潤產生微小的影響。
他預計,像許多革命一樣,人工智能的影響在一段時間內不會太明顯,但很快就會完全顯現出來。他說:“事情實際上正在發生比人們想象的大得多的變化。”
阿薩姆將人工智能的興起與互聯網泡沫相提并論,當時投資者對互聯網的熱情促使一些無利可圖的科技股瘋狂飆升,然后出現崩盤,但最終互聯網還是帶來了收益。阿薩姆說:“如今,這一生態系統的價值是當時人們認為的數倍。所以我認為這(人工智能)將遵循類似的模式。這就是為什么思愛普全力押注人工智能。”(財富中文網)
譯者:中慧言-王芳
There’s a common narrative in the investment community that says the people who really made money during the gold rush weren’t the miners—but the entrepreneurs who sold miners the picks and shovels they needed to prospect. Investors who recount this tale often point to the story of California’s first millionaire, a businessman and newspaper publisher named Samuel Brannan, who made the bulk of his fortune selling equipment and provisions to gold miners at a premium in the 1840s and ‘50s. Some will even bring up Levi Strauss, the German-born businessman who imported fine goods into San Francisco—including, of course, blue jeans. Strauss never spent a minute mining, but was certainly rewarded by the profits that came with the gold fever of his era.
This ‘picks and shovels’ narrative undoubtedly has merit, and continues to inform investors’ decisions during modern day, more tech-focused ‘gold rushes’—but it’s also only part of the story. Although the first to profit from the gold rush were a few lucky miners and those who sold them provisions and equipment, the full impact of the boom of that era was widespread, and the profits were distributed globally. The gold rush helped finance the first transcontinental railroad, led to a “green gold” farming boom in California, accelerated industrialization, increased international trade, and spawned transportation and communication innovations.
The point is this: the true mark of a revolutionary discovery or innovation—a once-in-a-lifetime opportunity for investors and the global economy—is often its long-term network effects; positive secondary and tertiary impacts that come after the pick and shovel sellers have already made their money. This was true in the canal boom of the 18th century, and during the dot-com era of the late ‘90s and early 2000s.
With this decade’s artificial-intelligence boom drawing comparisons with the gold rush, investors have been looking for evidence of these network effects for years as they try to separate hype from reality. Plenty of respectable studies and forecasts predict that AI can boost productivity, usher in an age of innovation, and even increase GDP over the long-term—but so far, only a few companies have really profited from the AI boom.
Tech giants like Nvidia and ASML that sell the picks and shovels of the AI revolution, the underlying technology that allows AI to operate, continue to outperform and seem on track to continue doing so. But on-the-ground evidence of AI’s supposed productivity-enhancing and economy-boosting impacts outside of these giants has been more subtle.
SAP SE could be one example of AI’s growing prominence, however. The Walldorff, Germany-based tech giant, which has roughly 108,000 employees and a market cap of $225 billion, is the world’s leading provider of enterprise resource planning (ERP) software, essentially providing the back office engine for large businesses.
SAP’s ERP software, which is increasingly moving to the cloud, helps with supply chain management, accounting, human resources, expenses, and a number of other business operations. And as Ruane Cunniff LP, the investment advisor and distributor of Sequoia Fund, a major investor in SAP, explained in its annual letter to shareholders in January, “for multinational enterprises that make or move something in the physical world, SAP is just about the only game in town.”
Although SAP isn’t an AI company, and they aren’t selling picks and shovels that enable AI, they are benefiting from the rise of the technology, both indirectly and directly. In an interview with Fortune, SAP CFO’s Dominik Asam explained that the AI boom has helped drive growth at his company, and said he’s dedicated to using the technology to enhance productivity and cut costs in-house moving forward.
When it comes to the questions over hype versus reality when it comes to AI, Asam is bullish too. “This is not like a blip or hype, but really one of the biggest, if not the biggest disruption in the technology industry,” he told Fortune.
An SAP case study: The incremental gains and potential pitfalls of AI
Cementing the cloud transition
The first network benefit that can be seen at SAP which may provide evidence of the staying power of the AI boom is corporations’ transition to the cloud for ERP services. Asam said that AI has helped SAP transition many of its ERP customers from on-premises computing to cloud-based computing, which means considerable demand for the company’s cloud business.
“AI is really converting the last skeptics we had from the journey from on-[premises] to cloud,” he told Fortune. “They understand we have to go to the cloud, they know that the on-prem model doesn’t work, given the velocity of innovation. They will be too slow, they will not be able to consume the most productive systems.”
The rapid pace of advancement in AI systems for ERP means companies need to be able to continually update their internal software, and that can’t be done on-site without serious costs, Asam said. In an interview with Fortune, UBS analyst Michael Briest backed up the idea that AI has been a “catalyst for the modernization” of many companies’ ERP software, benefitting SAP’s cloud ERP business. And SAP’s April 22 earnings report showed cloud revenue growth of 24% in the first quarter, and current cloud backlog (CCB) growth of 27%, the fastest on record. The CCB growth figure represents cloud revenue for the upcoming year for which clients have already signed contracts, and it is seen as a measure of underlying demand by analysts.
New revenue opportunities
Although SAP isn’t a pure AI play, like many tech companies these days it’s added AI services to bolster revenues and keep customers from jumping to the competition. CEO Christian Klein announced SAP would invest $1.1 billion on its Business AI unit in January as a part of a business restructuring and offer more AI solutions for customers.
The company now provides a range of AI products that can help with everything from the automation of tasks to tracking sales performance, customer insights, and more. SAP’s AI offerings will also help different lines of business—accounting and human resources, for example—better communicate to eliminate errors in operations like hiring, payroll, or employee retirements, according to Asam. “For instance, if an employee is leaving the company, you have to ensure that all access rights in the finance systems are automatically deleted, because otherwise you have a control failure and the auditor will come and say, ‘That guy could have manipulated the data,’” he explained, arguing AI will help prevent these issues. SAP even offers an “AI co-pilot” called Joule that will help sort through and explain data across its various applications.
Asam argued that SAP’s customers—which, for reference, generate 87% of total global commerce—would need huge amounts of data in order to train AI models properly, and only a few key firms can provide that. But SAP has the consent of the “lion’s share” of its customers to use their data to train AI models, and that gives them a big opportunity to provide AI services in their software, according to the CFO.
Still, SAP doesn’t yet break out its AI revenues into their own category, and its current AI offerings may not dramatically contribute to the top line in the near-term. UBS’ Briest argued that the Business AI unit is “a genuine opportunity,” but probably only for an “incremental” revenue increase in the near-term.
“In my view today, this is more about pulling along the cloud migration. And of course, it helps customers decide to modernize. But is it a separate revenue item? We’ll see. I think more evidence is required,” he said.
Long-term, however, Asam is bullish about AI’s potential to lift SAP. “We are developing these [AI] processes as we speak. We have about 30 use cases now…another 100 will be developed for general market introduction throughout the end of this year. And overtime, we will ramp that,” he said. “So this will take some time until you will really see it inflect. But when it inflects, it can be very big.”
Productivity gains and margin expansion
SAP is also implementing AI internally in order to save costs and increase worker productivity, and those efforts were ramped up after its restructuring announcement. Asam said the ultimate goal is to use AI to help with “decoupling cost growth from growth in revenues” in coming years, becoming more productive without dramatically increasing employee headcount. “In some areas, we are replacing, frankly, human processing power with machine processing power, which is actually more scalable if you don’t have the kind of significant inflation increase every year,” he told Fortune.
Take the example of the travel and expense management service SAP Concur, where SAP has implemented an AI system that responds to expense requests. “That engine is basically replicating or replacing the work of what formerly has been done [by humans], where some people have been checking the travel and expense claims against the rules,” Asam explained.
Employees currently make up 69% of SAP’s cost base, so a reduction in related costs due to AI could be beneficial. SAP’s CEO Christian Klein also highlighted multiple opportunities for using AI to save “triple digit millions” internally in the firm’s quarterly earnings call.
UBS’ Briest noted that AI’s ability to reduce labor costs could end up being important for the entire software industry as well. “When you look at the software industry, half the revenue pretty much walks out the door in salaries every night. That’s high relative to capital intensive industries as a percentage of revenue. And a lot of the talent is in these roles, sales, development, finance, and accounting, which will be transformed,” he said.
For SAP, Briest argued that some of the labor cost reduction “will accrue to the bottom line because they have a very sticky product”—meaning customers are unlikely to transition to a competitor due to associated costs.
AI’s true impact on earnings is still to come
SAP’s recent performance and future plans provide evidence of AI’s ability to boost corporate revenues, reduce costs, and enhance productivity, but the true inflection point for the technology may still lie ahead. For SAP, UBS’ Briest warned that “competitors won’t stand still” as AI revenues rise. “There’s a wave of innovation, and startups will be attracted to your high profitability,” he said. “A lot of it will get competed away over time.”
But while that may not be great news for SAP, it is “probably good for the global economy,” Briest said. After all, more competition typically brings innovation, lower costs, and improved productivity.
Also, while there is already evidence of both direct and indirect positive impacts on SAP’s business, even Asam told Fortune that it will take more time for AI to boost earnings numbers in the way many eager investors are anticipating. Even when AI is driving hundreds of millions of dollars of savings or revenue growth, it would only amount to a tiny change to SAP’s bottom line, given the company’s size.
He expects AI’s impact, like many revolutions, won’t be felt too dramatically for some time—but then all at once. “Things are actually inflecting to something much bigger than what people ever thought,” he said.
Asam compared the rise of AI to the dot-com bubble, where investor enthusiasm for the internet drove some unprofitable tech stocks to insane heights before a crash, but ultimately the internet delivered the goods. “Today, that ecosystem is worth multiples of what people thought it would be worth back then. So I think this [AI] will follow a similar pattern,” Asam said. “This is why we at SAP are really fully betting on that.”