精品国产_亚洲人成在线高清,国产精品成人久久久久,国语自产偷拍精品视频偷拍

首頁 500強 活動 榜單 商業(yè) 科技 領(lǐng)導(dǎo)力 專題 品牌中心
雜志訂閱

《財富》全球人工智能創(chuàng)新者50強

這家中國科技巨頭上榜

文本設(shè)置
小號
默認(rèn)
大號
Plus(0條)

人工智能是否會創(chuàng)造一個沒有人類工作的世界?計算機能否達(dá)到人類的智力水平?OpenAI的鬧劇會迎來怎樣的結(jié)局?人工智能領(lǐng)域的戲劇性變化證明,讀者和投資者需要密切關(guān)注這個領(lǐng)域,因為這個領(lǐng)域瞬息萬變。委婉地說,與人工智能技術(shù)有關(guān)的預(yù)測、想法和執(zhí)行五花八門。但對于這個剛剛起步的行業(yè),我可以確信的一點是:投資者和大大小小的公司都在認(rèn)真對待它。微軟(Microsoft)因為與OpenAI的關(guān)系,是主要參與者之一。該公司最近發(fā)現(xiàn),在人工智能領(lǐng)域每投資1美元,就能夠獲得3.5美元的回報。Crunchbase表示,今年在美國初創(chuàng)公司投資的每4美元中,就有1美元投給了人工智能公司;現(xiàn)在已經(jīng)有約200家人工智能獨角獸公司。但凡是經(jīng)歷過炒作周期的人都知道,即使在最熱門的行業(yè),慘敗的例子也遠(yuǎn)遠(yuǎn)超過大獲成功的公司的數(shù)量。為了評選首期《財富》全球人工智能創(chuàng)新者50強榜單,我們征求了風(fēng)險投資家、行業(yè)分析師和我們強大的人工智能專家團隊的意見,評選出位于人工智能創(chuàng)新前沿的公司。我們確定的一點是:這些公司所做的工作不僅會塑造人工智能的未來,還會影響我們生活的世界。

Abnormal Security公司

COURTESY OF ABNORMAL SECURITY

當(dāng)ChatGPT在2022年11月發(fā)布之后,伊凡·賴澤爾的第一反應(yīng)是:這是一項驚人的技術(shù)。他回憶道,然后他的想法是:“天哪,壞人也會得到這項技術(shù)。”2018年,賴澤爾與桑杰伊·杰亞古瑪合作創(chuàng)建了Abnormal Security,以幫助檢測和防止電子郵件網(wǎng)絡(luò)攻擊。該公司使用人工智能和機器學(xué)習(xí)進行行為分析,分析Slack等公司平臺的數(shù)據(jù),以幫助發(fā)現(xiàn)利用社交工程的電子郵件詐騙,并確定信息是由真實的員工發(fā)送,還是由黑客假冒員工發(fā)送。賴澤爾表示,ChatGPT和其他聊天機器人的爆火,增加了電子郵件攻擊的復(fù)雜性。但Abnormal計劃與電子郵件攻擊長期作戰(zhàn):今年早些時候,該公司整合了職場軟件Slack、Zoom和Microsoft Teams,并計劃增加賽富時(Salesforce)或ServiceNow等其他平臺。該公司稱,其客戶包括12%的《財富》美國500強公司。最近,公司宣布年度經(jīng)常性收入突破了1億美元。該公司還吸引了大量投資:Abnormal從Insight Partners、Greylock Partners和Menlo Ventures等投資者融資超過2.8億美元,估值達(dá)到40億美元。多年來,賴澤爾一直沒有認(rèn)真考慮IPO計劃。他指出,公司目前的主要任務(wù)是更好地保護客戶,而且公司可能在幾年內(nèi)上市。

Absci公司

COURTESY OF ABSCI

2011年,Absci的創(chuàng)始人及首席執(zhí)行官肖恩·麥克萊恩并沒有打算創(chuàng)建一家利用人工智能來開發(fā)藥物的公司。他計劃尋找一種設(shè)計蛋白質(zhì)的方法,以找到更多有效的治療藥物。但他最終開發(fā)出一種收集基于蛋白質(zhì)的數(shù)據(jù)的技術(shù),大語言模型可以利用這些數(shù)據(jù)預(yù)測最有效的解決生物學(xué)問題的藥物。濕實驗室能夠在六周內(nèi)生成和測試300萬個人工智能生成的藥物設(shè)計。該公司創(chuàng)造的一種免疫抗體(麥克萊恩拒絕透露這種抗體針對的疾病),預(yù)計可以在2025年投入使用。Absci在2021年上市,股價在一周內(nèi)從16美元上漲至28.48美元,公司估值超過20億美元。但這是其股價的最高點,因為在隨后一年股價暴跌,自2022年5月以來一直低于每股5美元。2022年8月,該公司經(jīng)過一次重組,并進行了裁員。

Adept AI公司

OURTESY OF ADEPT

Adept AI是正在開發(fā)下一代人工智能商務(wù)助理的公司之一。人工智能不僅能夠生成文字,還可以使用高管電腦上的所有軟件,為高管執(zhí)行任務(wù)和分析。位于美國舊金山的初創(chuàng)公司Adept AI將其聯(lián)合創(chuàng)始人、谷歌(Google)前研究員大衛(wèi)·欒、尼基·帕瑪爾和阿希士·瓦斯瓦尼,稱為人工智能的忠實支持者。帕瑪爾和瓦斯瓦尼是谷歌Transformer模型發(fā)明團隊的成員,他們在2022年離開Adept,創(chuàng)立了另外一家初創(chuàng)公司。Transformer模型是大語言模型革命的基礎(chǔ)。但Adept依舊可能獲得巨大的成功。該公司在一年前低調(diào)成立,共獲得了4.15億美元風(fēng)險投資。

Adobe公司

COURTESY OF ADOBE

創(chuàng)意設(shè)計與編輯巨頭Adobe在2022財年的營收達(dá)到176.1億美元。該公司在生成式人工智能領(lǐng)域引起了轟動。該公司有超過29,000名員工,你可能會認(rèn)為該公司對人工智能的開發(fā)會因此變得緩慢。但其首席技術(shù)官伊利·格林菲爾德表示,該公司很快利用多年的數(shù)據(jù)收集和研究,在一年內(nèi)就推出了Firefly。

這款工具有兩個特點。第一,它能夠與創(chuàng)意人士已經(jīng)使用的工具進行整合。Photoshop的用戶可以使用Generative Fill進行編輯,根據(jù)文本生成圖像,例如改變襯衫的圖案或者在照片中添加一個新的物品等。第二,該公司稱,生成的圖片能夠安全地用于商業(yè)用途,Adobe還承諾就任何版權(quán)侵權(quán)索賠向用戶提供賠償。Firefly使用該公司龐大的Adobe Stock內(nèi)容庫進行訓(xùn)練,該公司稱,其有權(quán)利使用這些內(nèi)容訓(xùn)練人工智能(盡管一些Adobe Stock的創(chuàng)作者抱怨稱,他們在上傳圖片時并未意識到他們對Adobe有過這種授權(quán))。Adobe正在考慮把生成式人工智能整合到Creative Cloud中的更多工具里。

今年10月,該公司發(fā)布了Firefly Image 2,這款工具提升了人工智能生成的圖片的質(zhì)量,并允許用戶選擇他們希望生成的圖片的特定風(fēng)格。格林菲爾德表示,下一個前沿領(lǐng)域是讓藝術(shù)家接受人工智能。在他設(shè)想的世界里,藝術(shù)家可以用自己的作品來訓(xùn)練人工智能,并將其對外授權(quán)。

Aligned AI公司

COURTESY OF ALIGNED AI

Aligned AI的內(nèi)容審查過濾器擊敗了OpenAI,從而一舉成名。據(jù)《財富》雜志的杰里米·卡恩報道, Aligned AI捕獲了97%的有問題回答,而OpenAI的捕獲率為32%。之后,它率先證明其人工智能模型能夠基于簡單的視頻游戲環(huán)境CoinRun,掌握具有挑戰(zhàn)性的人工智能安全和校準(zhǔn)基準(zhǔn)。安全從一開始就是Aligned AI的招牌。Aligned AI的聯(lián)合創(chuàng)始人及首席執(zhí)行官瑞貝卡·戈爾曼說:“你可以真正從邏輯的角度思考人工智能帶來的危險,并創(chuàng)建技術(shù)解決方案來解決這個問題。”戈爾曼和斯圖爾特·阿姆斯特朗于2021年12月在英國牛津創(chuàng)立了這家公司,他們的想法是人工智能的能力和安全不應(yīng)該是一場零和游戲。相反,他們相信,人工智能越安全,就會變得越有效,因為最終用戶會更信任它。

該公司仍然處于發(fā)展初期,在種子輪之前融資600,000英鎊(約合762,000美元),僅有六名員工。它目前正在加快招聘技術(shù)人員,希望與人工智能行業(yè)的參與者建立合作關(guān)系,為他們提供安全功能。戈爾曼表示,Aligned的目標(biāo)是與主要行業(yè)參與者合作,支持人工智能的每一種使用案例,比如質(zhì)量保證或機器人技術(shù)等。

對齊研究中心(Aligned Research Center)

COURTESY OF ALIGNED RESEARCH CENTER

作為榜單上的少數(shù)幾家非營利組織之一,對齊研究中心由OpenAI的前員工保羅·克里斯蒂安諾成立于2021年6月,其宗旨是研究“對齊問題”,即如何將人工智能的行動與人類的價值觀保持一致。隨著人工智能系統(tǒng)日益接近通用人工智能(AGI),這個任務(wù)變得更加艱巨。通用人工智能模型執(zhí)行所有認(rèn)知任務(wù)的效果,與人類相當(dāng)甚至比人類更出色。如果人工智能開始產(chǎn)生自己的意圖,即便這些意圖只是實現(xiàn)人類指定的主要目標(biāo)所需要的子目標(biāo),那么對齊就將變成一個緊迫的問題。ARC與OpenAI和Anthropic等大型人工智能公司合作,通過觀察模型對惡意行為者可能使用的提示詞的反應(yīng),對模型進行“紅隊”測試,并觀察模型本身是否會有潛在危險性的自主行動,例如欺騙或自我復(fù)制等。OpenAI在發(fā)布GPT-4之前,首先授權(quán)ARC訪問該模型。ARC測試了該模型是否會在服務(wù)器上隱藏自己,或者向人類撒謊。測試結(jié)果沒有發(fā)現(xiàn)第一種行為,但確實發(fā)現(xiàn)了撒謊行為。ARC認(rèn)為目前的人工智能系統(tǒng)并不會像最激烈的“人工智能末日論者”所擔(dān)心的那樣,威脅人類生存,這能夠讓我們睡得更加安穩(wěn)。但這種狀況或許不會持續(xù)太久。

Anthropic公司

COURTESY OF ANTHROPIC

誰可以與OpenAI無處不在的聊天機器人ChatGPT相匹敵?一個由OpenAI的前研究人員組成的團隊希望答案是Anthropic。包括達(dá)里奧與丹妮拉·阿莫迪兄妹在內(nèi)的OpenAI的前研究主管,于2021年創(chuàng)立了Anthropic,旨在創(chuàng)建最安全的人工智能系統(tǒng)——這些系統(tǒng)不會像一些聊天機器人(包括ChatGPT)那樣,散播錯誤信息或危害性回應(yīng)。Anthropic在2023年年初發(fā)布了聊天機器人Claude,它與同行相比有一些顯著的不同之處:該公司聲稱這款聊天機器人“不太可能產(chǎn)生危害性輸出”,并描述其目標(biāo)是做到有用、無害和誠實。該初創(chuàng)公司最近還把Claude能夠處理的單次查詢中的單詞數(shù)量擴展到75,000個,相當(dāng)于許多小說的長度。該公司表示,這讓Claude可以準(zhǔn)確地分析財務(wù)報表或法律合同等技術(shù)類文件。(為了對抗Anthropic的優(yōu)勢,OpenAI最近也擴大了ChatGPT能夠處理的單詞數(shù)量。)市場推廣負(fù)責(zé)人桑迪·班納吉對《財富》雜志表示,從Y Combinator的初創(chuàng)公司到Zoom這樣的大型上市公司,Anthropic有“成千上萬的”客戶在使用Claude。該公司最近從亞馬遜(Amazon)獲得40億美元的巨額融資,而且有媒體稱,該公司正在與谷歌談判,計劃再從谷歌融資20億美元。除此之外,該公司之前已經(jīng)從谷歌和Menlo Ventures、Salesforce Ventures等投資者融資5.5億美元。

Anyscale公司

COURTESY OF ANYSCALE

OpenAI、Instacart、Netflix、Cohere和Uber有什么共同之處?據(jù)四年前創(chuàng)立的初創(chuàng)公司Anyscale表示,它們都使用了由該公司開發(fā)的開源軟件基礎(chǔ)設(shè)施架構(gòu)Ray。Ray可以幫助人工智能的開發(fā)人員擴展其網(wǎng)絡(luò)。近年來,創(chuàng)建和運行人工智能模型需要的計算日益增多,這意味著在服務(wù)器群集之間分配訓(xùn)練、調(diào)整和運行大規(guī)模人工智能系統(tǒng)所需的計算負(fù)載,可能耗時費力。Anyscale的首席執(zhí)行官及聯(lián)合創(chuàng)始人羅伯特·西原告訴《財富》雜志:“從事人工智能研究的人,要花費50%的時間來設(shè)置設(shè)備集群和配置資源,這種情況非常普遍。”他們表示,Ray的作用是處理基礎(chǔ)設(shè)施方面的問題,能夠把訓(xùn)練和部署人工智能模型所需的時間縮短到幾分鐘。Ray最初是由加州大學(xué)伯克利分校(UC Berkeley)RISELab的研究人員開發(fā)的開源項目,后來成為Anyscale的主要產(chǎn)品。該公司現(xiàn)在獲得了安德森·霍洛威茨(Andreessen Horowitz)、恩頤投資(NEA)、Addition和英特爾投資公司(Intel Capital)等頂級硅谷投資者的投資。西原表示,過去六個月以來,人們對構(gòu)建人工智能系統(tǒng)的興趣飆升,對Ray的需求也隨之增加。他說他們注意到一個重要趨勢:越來越多的沒有機器學(xué)習(xí)專業(yè)知識的普通開發(fā)人員希望開發(fā)人工智能應(yīng)用。他表示對Anyscale而言,這意味著“這個市場的規(guī)模更加龐大,不止局限于機器學(xué)習(xí)專家”。目前,Ray是一個免費使用的開源平臺,西原估計有上萬家公司正在使用Ray。至于西原本人,在談到最近幾個月的日常生活時,他說:“我們現(xiàn)在變得更加忙碌。”

百度

COURTESY OF BAI-DU

截至2023年11月,“中國版谷歌”百度在紐約證券交易所(New York Stock Exchange)的市值約為380億美元。百度以中文優(yōu)化的搜索引擎而聞名,同時它還涉足一系列其他技術(shù)領(lǐng)域,尤其是人工智能。百度已經(jīng)訓(xùn)練出一個名為文心一言的聊天機器人,與ChatGPT競爭,文心一言的英文名稱來自《芝麻街》(Sesame Street)上著名的木偶角色。(在人工智能開發(fā)人員的內(nèi)部玩笑中,許多模型都借用了木偶角色的名字。)2023年10月,百度發(fā)布了文心一言4.0,并聲稱該模型處理許多中文特定任務(wù)的表現(xiàn)優(yōu)于OpenAI的聊天機器人,并且在復(fù)雜度和功能方面可以與ChatGPT相媲美。此外,百度除了在其搜索引擎、云計算部門和其他產(chǎn)品中使用機器學(xué)習(xí)外,還在開發(fā)自動駕駛算法,并擁有一支無人駕駛的“機器人出租車”車隊,它們在北京和其他三個中國城市車水馬龍的街道上行駛。

彭博社(Bloomberg)

COURTESY OF BLOOMBERG

金融資訊巨頭彭博社(Bloomberg)在今年3月出于研究的目的,發(fā)布了BloombergGPT。該模型有7億個數(shù)據(jù)單位,但目前用于訓(xùn)練模型的數(shù)據(jù)單位只有6,000億。據(jù)彭博社表示,BloombergGPT執(zhí)行金融特定任務(wù)和一般語言理解任務(wù)的表現(xiàn),優(yōu)于類似的人工智能工具。訓(xùn)練模型的數(shù)據(jù)有一半以上來自專有信息,因此BloombergGPT能夠為公司未來如何使用人工智能提供一個模板。彭博社使用自然語言處理,幫助其金融數(shù)據(jù)的用戶和媒體尋找必要信息,獲得交易見解,例如市場情緒分析等,該公司在這方面已經(jīng)遙遙領(lǐng)先。彭博社還率先使用人工智能撰寫頭條新聞和公司業(yè)績報道。

C3.ai公司

現(xiàn)在,人工智能成為熱門話題。但C3 AI早在十多年前就開始開發(fā)這個市場。今年3月,C3 AI發(fā)布了C3 Generative AI,成為最早提供可以在企業(yè)內(nèi)部信息系統(tǒng)中運行的生成式人工智能解決方案的公司之一。目前,喬治亞太平洋公司(Georgia-Pacific)、Flint Hills Resources公司、紐柯鋼鐵(Nucor)、Pantaleon、聯(lián)合愛迪生(Con Edison)以及美國國防部(U.S. Department of Defense)下屬的美國空軍(U.S. Air Force)和導(dǎo)彈防御局(Missile Defense Agency)等部門,都采用了C3 Generative AI項目。該公司表示,導(dǎo)彈防御署使用這項技術(shù),能夠?qū)w行測試分析和報告時間從一兩個月縮短到一周。總部位于美國加州雷德伍德城的C3 AI,由億萬富翁、企業(yè)軟件專家湯姆·西貝爾運營。從廣義上來說,該公司為制造業(yè)、金融服務(wù)和石油天然氣等行業(yè)提供人工智能工具。該公司參與了歐洲公用事業(yè)公司意大利國家電力公司(Enel)、杜克能源(Duke Energy)和殼牌(Shell plc.)等公司的多個大規(guī)模能源優(yōu)化和預(yù)防性維護項目。該公司成立于2009年,并于2020年12月上市。C3 AI在2023財年總營收2.668億美元,較2022財年增長了5.6%。

Cerebras公司

COURTESY OF CEREBRAS

Cerebras的聯(lián)合創(chuàng)始人及首席執(zhí)行官安德魯·費爾德曼表示,該公司的旗艦計算機芯片有“餐盤”那么大。他聲稱這是史上最大的芯片。這款大型芯片旨在使運行當(dāng)今的大型人工智能模型變得更容易,無需擔(dān)心在多個圖形處理單元(GPU)分配負(fù)荷。自2016年成立以來,Cerebras的業(yè)務(wù)不再局限于芯片制造,而是開發(fā)了自己的定制服務(wù)器,并且目前正在開發(fā)自己的開源人工智能模型和數(shù)據(jù)集,希望在人工智能領(lǐng)域取得成功。在這個過程中,截至2021年11月的上一輪融資,該公司從私人投資者獲得了約7.2億美元投資,估值超過40億美元。將近兩年后的2023年7月,公司推出了由九臺“超級計算機”組成的網(wǎng)絡(luò)Condor Galaxy,這些計算機由餐盤大小的計算機芯片驅(qū)動,其客戶包括新冠疫苗的開發(fā)商阿斯利康(AstraZeneca)和匹茲堡超級計算中心(Pittsburgh Supercomputer Center)。雖然Cerebras經(jīng)常宣傳其芯片和數(shù)據(jù)中心的規(guī)模,但首席執(zhí)行官費爾德曼表示,他的公司并沒有停止增長:“我們正在開發(fā)更大、更快的超級計算機,以幫助客戶更快地完成工作任務(wù)。”

Character. AI公司

如果你可以跟埃隆·馬斯克對話會怎么樣?或者與《哈利·波特》(Harry Potter)里的德拉科·馬爾福對話會怎樣?Character.AI讓用戶能夠與億萬富翁、名人以及歷史人物和虛構(gòu)角色聊天。這款在線生成式人工智能聊天機器人利用深度學(xué)習(xí)算法和大型語言模型,以模仿角色在真實生活中的口吻,與用戶進行對話。2021年,谷歌的前工程師諾姆·薩澤爾和丹尼爾·德·弗雷塔斯共同創(chuàng)立了Character.AI,兩人分別擔(dān)任這家初創(chuàng)公司的首席執(zhí)行官和總裁。今年年初,該公司在A輪融資中融得1.5億美元,估值為10億美元,此輪融資由安德森·霍洛維茨領(lǐng)投。據(jù)路透社(Reuters)報道,該初創(chuàng)公司正在洽談以50億美元估值進行風(fēng)險融資的事宜,融資的對象包括公司高管的前雇主谷歌。Character.AI可以免費使用,但用戶能夠通過每月支付9美元的訂閱費,來跳過虛擬隊列,直接與角色對話。該公司稱在聊天機器人發(fā)布后的前六個月,其網(wǎng)站的月訪問量達(dá)到1億次。

Cohere公司

COURTESY OF COHERE

雖然相比OpenAI和Anthropic等競爭對手,Cohere的知名度不高,但作為由谷歌大腦(Google Brain)的團隊成員創(chuàng)建的人工智能模型開發(fā)商,Cohere致力于成為服務(wù)企業(yè)的人工智能平臺。企業(yè)可以使用Cohere開發(fā)的大語言模型,將人工智能融入文案寫作、搜索、文本和網(wǎng)頁總結(jié)等功能。該公司已經(jīng)成立了四年,其產(chǎn)品受到了Spotify、甲骨文(Oracle)和Jasper等公司的青睞。但把敏感數(shù)據(jù)輸入到大語言模型,引發(fā)了對隱私問題的廣泛擔(dān)憂。Cohere表示,為了防止公司的專有數(shù)據(jù)落入不當(dāng)之人的手中,它直接向企業(yè)提供服務(wù),無論是使用企業(yè)現(xiàn)有的云服務(wù)提供商還是在現(xiàn)場為企業(yè)提供服務(wù),從而使企業(yè)能夠控制自己的數(shù)據(jù)。今年6月,Cohere宣布在C輪融資中融得2.7億美元,投資者包括Index Ventures,以及英偉達(dá)(Nvidia)、甲骨文和賽富時等科技、軟件和芯片巨頭。今年年初,該公司還推出了其企業(yè)人工智能助理Coral。Cohere聯(lián)合創(chuàng)始人及首席執(zhí)行官艾丹·戈麥斯在一份文件里對《財富》雜志表示:“我們的模型要保持領(lǐng)先,這是一個巨大的挑戰(zhàn)。”但是,“這正是從事這個領(lǐng)域的工作激動人心的時刻。”

Conjecture公司

COURTESY OF CONJECTURE

Conjecture的聯(lián)合創(chuàng)始人及首席執(zhí)行官康納·利希,擔(dān)心人工智能會對人類構(gòu)成生存威脅,因此他主張嚴(yán)格限制開發(fā)更強大的“前沿”人工智能模型,他已經(jīng)成為這方面的意見領(lǐng)袖之一。但與此同時,總部位于英國倫敦的Conjecture正在竭盡全力研究如何控制大型人工智能模型,并為自己開發(fā)功能強大的人工智能系統(tǒng)。Conjecture成立于2022年3月,相對而言,它是人工智能競賽的新人。該公司獲得了一批投資者的支持,包括Github的前首席執(zhí)行官奈特·弗里德曼和特斯拉(Tesla)的前人工智能高級總監(jiān)丹尼爾·格羅斯。除利希以外,該公司的其他創(chuàng)始人包括希德·布蘭科和加布里埃爾·阿爾福。他們擁有豐富的背景——利希曾經(jīng)反向工程了GPT-2,并與布萊克合作創(chuàng)建了人工智能研究實驗室EleutherAI,而阿爾福創(chuàng)建了兩家區(qū)塊鏈初創(chuàng)公司。Conjecture認(rèn)為,現(xiàn)有的大語言模型是一個黑匣子,人類除了提供數(shù)據(jù)之外幾乎無法控制,該公司希望提供一種替代選擇,讓系統(tǒng)變得可以解釋、有邊界和可靠。迄今為止,這家人工智能公司已經(jīng)融資2,500萬美元。

Databricks公司

COURTESY OF DATABRICKS

總部位于美國舊金山的企業(yè)軟件公司Databricks成立已經(jīng)有十年之久,但現(xiàn)在它把人工智能作為核心業(yè)務(wù)。該公司創(chuàng)建了自己的低成本生成式人工智能聊天機器人——Dolly——開發(fā)成本只有30美元。Dolly 2.0是一個開源模型,這意味著任何組織都能夠把該公司創(chuàng)建聊天機器人所使用的訓(xùn)練集和數(shù)據(jù),進行商業(yè)應(yīng)用。該公司希望可以啟發(fā)其他人開發(fā)自己的生成式人工智能技術(shù)。Dolly在準(zhǔn)確度或功能廣度方面不及ChatGPT。但它的目的是證明,一家公司不需要耗費巨資,也不必?fù)碛泻A繑?shù)據(jù),就能夠開發(fā)出一款基本的、沒有花哨功能的聊天機器人。2023年5月,該公司對其9,000多名客戶進行了調(diào)查,了解他們?nèi)绾问褂萌斯ぶ悄堋U{(diào)查發(fā)現(xiàn),該公司的數(shù)據(jù)和人工智能平臺Databricks Lakehouse的需求持續(xù)增加。一個月后,它以13億美元的價格收購了創(chuàng)新平臺MosaicML。該平臺支持用戶創(chuàng)建自己的生成式人工智能模型。Databricks還在今年9月的I輪風(fēng)險資本融資中,額外獲得5億美元資金,英偉達(dá)成為其新戰(zhàn)略投資者。

Eleuther AI公司

COURTESY OF ELEUTHERAI

2020年5月,OpenAI發(fā)布了一份研究報告,詳細(xì)分析了為什么人工智能語言模型規(guī)模越大,能力越強。EleutherAI的執(zhí)行董事斯特拉·彼得曼說:“據(jù)我們了解,唯一的限制是你愿意投入多少資金。”與此同時,OpenAI只允許經(jīng)過批準(zhǔn)的研究人員使用ChatGPT-3。有些人對此感到沮喪,于是在一個Discord服務(wù)器上,他們組成了一個團體,試圖復(fù)制OpenAI的成就,這個團體最終命名為EleutherAI。彼得曼表示:“社會有與技術(shù)互動的機制,但如果技術(shù)被封鎖,這些機制就很難實施。”這個團隊的成員來自計算機科學(xué)、哲學(xué)和英語等諸多領(lǐng)域。很快他們就發(fā)布了一系列大語言模型。2022年年初,EleutherAI推出了GPT-NeoX-20B,這是當(dāng)時公開發(fā)布的最大的大語言模型。之后,這個研究團體開始把重心從建立大型開源模型,轉(zhuǎn)向其他人工智能研究領(lǐng)域,包括深入研究人工智能的局限性和風(fēng)險。彼得曼在談到EleutherAI的影響時稱:“如今,有意提供開源模型的公司越來越多。”

Eleven Labs公司

COURTESY OF ELEVENLABS

ElevenLabs的聯(lián)合創(chuàng)始人馬蒂·斯塔尼舍夫斯基說:“假設(shè)有這樣一部電影,在所有的場景和對白中,都有一個聲音在用波蘭語講述著內(nèi)容。可以想象,這是一種非常糟糕的體驗。”斯塔尼舍夫斯基和他最好的朋友、另外一位聯(lián)合創(chuàng)始人皮奧特·達(dá)布科夫斯基就經(jīng)歷了這個問題。2023年1月,他們結(jié)合在Palantir和谷歌積累的機器學(xué)習(xí)經(jīng)驗,推出了人工智能驅(qū)動語音軟件,能夠?qū)⑽谋巨D(zhuǎn)換為語音。用戶可以設(shè)計自己的人工智能語音,但真正引起人們注意的是,他們的軟件在從短音頻樣本中克隆人聲方面表現(xiàn)非常出色。雖然ElevenLabs的條款和條件規(guī)定,人們必須獲得許可才能夠復(fù)制他人的聲音,但還是有人使用該軟件創(chuàng)建了未經(jīng)授權(quán)的名人深度偽造音頻,比如讓本·夏皮羅和艾瑪·沃特森等名人說出冒犯性言論,而且人們相信可能有犯罪分子利用這款軟件幫助實施一系列詐騙,之后該軟件引起了關(guān)注。斯塔尼舍夫斯基表示:“我們絕不支持這種行為,我們將采取行動。”他還指出,平臺上的所有音頻文件都是可以追溯的。公司采取了其他安全措施,以驗證用戶身份,并確保他們克隆的是自己的聲音。ElevenLabs堅稱,其軟件真正的殺手級應(yīng)用是,幫助創(chuàng)作者、企業(yè)和有聲讀物出版商擴大內(nèi)容的地理覆蓋范圍,使其能夠把口語翻譯成20多種語言,而且保證原始音色不會失真。該公司稱已經(jīng)有數(shù)十萬付費注冊用戶,但拒絕提供營收數(shù)據(jù)。2023年6月,該公司通過A輪融資融得1,900萬美元,此輪融資由GitHub的前首席執(zhí)行官奈特·弗里德曼、丹尼爾·格羅斯和安德森·霍洛威茨領(lǐng)投。

EvenUp公司

COURTESY OF EVENUP

律師的工作枯燥乏味,處理各種文書工作可能會耗費幾個小時。對于專門從事人身損害賠償?shù)穆蓭煟词箍蛻艨梢缘玫劫r償,可能也需要等待幾個月的時間。成立四年的初創(chuàng)公司EvenUp,致力于縮短這個時間,并為客戶爭取到更高的賠償金。這家備受矚目的初創(chuàng)企業(yè)已經(jīng)引起了硅谷頂級投資者和人工智能思潮的關(guān)注。據(jù)報道,經(jīng)過數(shù)輪競爭激烈的融資,EvenUp從柏尚投資(Bessemer Venture Partners)和貝恩資本風(fēng)險投資公司(Bain Capital Ventures)等風(fēng)險投資公司融資近6,500萬美元(有報道稱EvenUp之后進行了更高金額的融資)。EvenUp的首席執(zhí)行官拉米·卡拉比巴爾在6月對路透社表示,客戶通過該平臺獲得的賠付金額增加了30%,而且還節(jié)省了時間。卡拉比巴爾估計,有300,000人身傷害律師能夠使用其產(chǎn)品,但到目前為止,這家初創(chuàng)公司約有500名客戶,僅占一小部分。EvenUp用戶需要支付一筆年度訂閱費,金額從數(shù)千美元到數(shù)十萬美元不等。卡拉比巴爾告訴路透社,該公司2023年的經(jīng)常性收入超過1,000萬美元。雖然其他初創(chuàng)公司也在進軍律師人工智能領(lǐng)域,但投資者認(rèn)為EvenUp專注于一個特定的小眾市場。EvenUp的投資方、貝恩資本風(fēng)險投資公司的合伙人薩拉·辛克福斯告訴《財富》雜志:“他們沒有試圖在廣闊的法律服務(wù)領(lǐng)域中做到面面俱到,而是高度專注于為他們的客戶創(chuàng)造巨大的價值。”

Exscientia公司

COURTESY OF EXSCIENTIA

迄今為止,沒有一種通過人工智能引導(dǎo)的過程發(fā)現(xiàn)的藥物可以通過二期人體臨床試驗。Exscientia是正在努力改變這一狀況的公司之一。該公司成立于2012年,總部位于英國牛津,其在人工智能幫助下發(fā)現(xiàn)的六種藥物已經(jīng)進入了臨床試驗階段。(一家日本制藥公司現(xiàn)在擁有其中三種藥物的專有權(quán)。)它目前的產(chǎn)品組合包含各類藥物,既有抗癌藥物,也有抗炎分子。該公司籌集了大量現(xiàn)金,并于2021年10月以近30億美元的估值上市。(截至2023年10月,其市值約為6.8億美元。)Exscientia的創(chuàng)始人及首席執(zhí)行官安德魯·霍普金斯是制藥行業(yè)的資深人士。他表示,與傳統(tǒng)公司相比,他的人工智能驅(qū)動的藥物發(fā)現(xiàn)過程顯著縮短了尋找有前途的分子所需的時間。他說:“我們的化學(xué)專家能夠使用生成式人工智能,為他們的設(shè)計決策真正提供幫助,這確實大幅縮短了時間。”

谷歌DeepMind(Google DeepMind)

COURTESY OF GOOGLE

大型科技公司對人工智能近期的創(chuàng)新垂涎依舊,但谷歌一直是人工智能領(lǐng)域的先驅(qū)。谷歌研究部門(Google Research)和谷歌在2014年收購的DeepMind帶來了過去十年最重要的人工智能突破,其中包括:第一個擊敗人類專業(yè)圍棋手的計算機程序AlphaGo、可以預(yù)測蛋白質(zhì)結(jié)構(gòu)的人工智能系統(tǒng)AlphaFold,以及生成式人工智能聊天機器人Sparrow。DeepMind最近與谷歌的另外一個人工智能研究部門合并成谷歌DeepMind。2017年,谷歌研究部門發(fā)明了神經(jīng)網(wǎng)絡(luò)設(shè)計Transformer,這成為目前大多數(shù)生成式人工智能產(chǎn)品的基礎(chǔ)技術(shù)。谷歌還致力于將人工智能融入其所有產(chǎn)品,包括其Workspace辦公生產(chǎn)力軟件。為了與OpenAI的ChatGPT和微軟OpenAI驅(qū)動的必應(yīng)(Bing)競爭,谷歌推出了基于強大的PaLM 2大語言模型的聊天機器人Bard。它還準(zhǔn)備推出一個名為Gemini的下一代人工智能模型,它暗示任何競爭對手即使目前尚未發(fā)布的任何人工智能模型,都難以與這個模型的能力匹敵。有人認(rèn)為,該公司很可能正在努力構(gòu)建人工智能系統(tǒng),作為用戶在互聯(lián)網(wǎng)上的助理,幫助用戶處理從預(yù)訂航班和餐廳,到在線購買食品雜貨等各種任務(wù)。谷歌還一直努力利用其在生成式人工智能領(lǐng)域的能力,吸引更多大企業(yè)客戶使用其谷歌云平臺(Google Cloud Platform)。一些行業(yè)觀察者認(rèn)為,谷歌的海量數(shù)據(jù)和深厚的人工智能實力將有利于其取得優(yōu)勢,使其能夠抵御來自微軟和OpenAI的任何重大挑戰(zhàn)。此外,這家大型科技巨頭不止是關(guān)注自己的人工智能項目:據(jù)報道,谷歌在人工智能模型開發(fā)商Anthropic投資了3億美元,后者也登上了《財富》雜志的榜單。不過,無法回避的事實是,許多生成式人工智能的用例對谷歌的商業(yè)模式構(gòu)成了長期挑戰(zhàn)。谷歌的商業(yè)模式主要基于廣告,而不是軟件即服務(wù)的訂閱模式。當(dāng)用戶不再在互聯(lián)網(wǎng)上搜索,而是依賴人工智能助手呈現(xiàn)它們?yōu)槲覀冋业降男畔r,軟件即服務(wù)的訂閱模式似乎更合適。你無法像現(xiàn)實世界一樣,利用人工智能吸引的用戶變現(xiàn)。

Hippocratic AI公司

在Hippocratic AI的聯(lián)合創(chuàng)始人及首席執(zhí)行官蒙加爾·沙哈設(shè)想的世界里,護士的數(shù)量將是今天的十倍。他們會用你首選的語言,給你打電話解讀實驗室檢測結(jié)果,幫助管理慢性病護理,并解答你的問題。只是這些護士將是在醫(yī)療護理特定大語言模型上訓(xùn)練的人工智能護士。它們提供這種護理服務(wù)的成本只有每小時5美分。該初創(chuàng)公司的創(chuàng)始團隊中包括醫(yī)生、一家大型醫(yī)院的前首席運營官和谷歌的醫(yī)療大語言模型Med-PaLM的一位創(chuàng)作者。

Hippocratic AI成立于2023年5月,在由General Catalyst和安德森·霍洛威茨領(lǐng)投的種子輪融資中,融得5,000萬美元。沙哈表示,產(chǎn)品必須達(dá)到準(zhǔn)確性基準(zhǔn),并且有必要的安全措施之后,才會上市。到那時,它將與醫(yī)療系統(tǒng)合作推廣其產(chǎn)品。

Hugging Face公司

COURTESY OF HUGGING FACE

在開源人工智能模型領(lǐng)域,Hugging Face的規(guī)模最大,它已經(jīng)成為人工智能開發(fā)者尋找模型和工具的必然選擇。開發(fā)者可以利用這些模型和工具,輕松創(chuàng)建人工智能驅(qū)動的產(chǎn)品,無需向OpenAI、Anthropic或谷歌支付高額費用。該公司于2016年由三名創(chuàng)業(yè)者創(chuàng)立,最初的業(yè)務(wù)是為iPhone開發(fā)一款有趣的聊天機器人(公司的名稱靈感來自所謂的“擁抱臉”表情包)。但來自人工智能社區(qū)的熱情,讓這家公司改變了重心,成為一個幫助人工智能開發(fā)者尋找模型、數(shù)據(jù)集和工具的平臺。如果有人希望發(fā)布一款開源人工智能模型或數(shù)據(jù)集,它也是首選的分銷平臺,類似于GitHhub與傳統(tǒng)代碼的關(guān)系一樣。Hugging Face自己也開發(fā)了多個開源人工智能模型,其中知名度最高的是BLOOM大語言模型。公司的開源策略毫無疑問帶來了回報:Hugging Face在由Salesforce Ventures領(lǐng)投的D輪融資中融得2.35億美元,在2023年8月的估值達(dá)到了45億美元。

IBM公司

COURTESY OF IBM

總部位于美國紐約阿蒙克的IBM,早在20多年前就推出了Watson,開始研究人工智能技術(shù),當(dāng)時這項技術(shù)的能力令全世界為之著迷。2023年,該公司推出了其生成式人工智能產(chǎn)品Watsonx,并堅信這項技術(shù)將帶來生產(chǎn)力的爆發(fā)。IBM的首席執(zhí)行官阿爾溫德·克里希納預(yù)計,在未來五年內(nèi),公司目前近三分之一的崗位能夠由人工智能和自動化取代,從而讓人類可以從事高價值的工作。克里希納表示,提高生產(chǎn)力的好處可能意味著再投資和更大的利潤空間。IBM的Watsonx已經(jīng)吸引了美國國家航空航天局(NASA)和Wix等客戶。該公司還為客戶提供人工智能,幫助客戶實現(xiàn)自動化、現(xiàn)代化和提供客戶服務(wù)。例如,巴西布拉德斯科銀行(Bradesco)使用Watson助手自動解答客戶服務(wù)問題,每月回答283,000個問題。IBM專注于在能夠擴展的相關(guān)領(lǐng)域擴大其人工智能的應(yīng)用,并加強其在傳統(tǒng)IT業(yè)務(wù)之外的地位;它承諾未來三年為200萬人進行人工智能培訓(xùn)。該公司以46億美元收購了軟件公司Apptio,來增強其人工智能業(yè)務(wù)和紅帽(Red Hat)云業(yè)務(wù)。

Inflection公司

COURTESY OF INFLECTION

這家初創(chuàng)公司成立的時間不久,可能有許多人并不了解它,但這家公司不容小覷。它擁有一支實力強大的創(chuàng)始團隊,包括谷歌DeepMind的聯(lián)合創(chuàng)始人穆斯塔法·薩利曼、DeepMind前首席科學(xué)家凱倫·西蒙尼楊以及LinkedIn的聯(lián)合創(chuàng)始人和風(fēng)險投資家里德·霍夫曼。Inflection已經(jīng)通過微軟和英偉達(dá)等投資者融資超過15億美元。該公司發(fā)布了一款基于會話的生成式人工智能聊天機器人Pi,它被設(shè)計城一款可以提供情感支持的對話者,并且能夠整合到iMessage和其他通信平臺。在發(fā)布這款聊天機器人時,薩利曼稱:“Pi是一種新型人工智能,它不僅聰明,而且有很高的情商。我們將Pi看作是一個數(shù)字伴侶,無論你想學(xué)習(xí)新東西,還是需要向一個發(fā)泄對象聊聊你一天的經(jīng)歷,或者只是需要一個好奇而友善的對手來打發(fā)時間,它都會始終陪伴著你。”然而,Pi值得關(guān)注的是它所使用的Inflection的Inflection-1大語言模型,這個模型在某些任務(wù)上可以與OpenAI和Anthropic的模型相媲美。而且薩利曼一直暗示,他認(rèn)為公司的未來不只是開發(fā)一款高情商的聊天機器人,而是一個人工智能驅(qū)動的個人“參謀長”,它將幫助用戶安排工作和個人生活,并代表他們執(zhí)行無數(shù)任務(wù)。7月,該公司與亞馬遜、微軟、OpenAI、Meta和其他人工智能實驗室共同前往白宮,承諾執(zhí)行安全的人工智能措施。

財捷集團(Intuit)

COURTESY OF INTUIT

在開發(fā)有用的人工智能系統(tǒng)時,數(shù)據(jù)至關(guān)重要。財務(wù)軟件巨頭、曾經(jīng)開發(fā)出TurboTax、QuickBooks、Credit Karma和Mailchimp的財捷集團,擁有大量數(shù)據(jù)。今年早些時候,該公司發(fā)布了生成式人工智能開發(fā)的專有操作系統(tǒng)GenOS,該系統(tǒng)能夠配合最先進的第三方大語言模型以及財捷集團自己定制訓(xùn)練的財務(wù)大語言模型使用,通過微調(diào)可以解決稅務(wù)、會計、現(xiàn)金流、個人財務(wù)和市場營銷等方面的挑戰(zhàn)。該公司與超過24,000家金融機構(gòu)合作,它們每天生成650億條機器學(xué)習(xí)預(yù)測。財捷集團的首席執(zhí)行官薩桑·古達(dá)茲在《財富》雜志去年舉辦的一次會議上表示:“我們沒有一個專門負(fù)責(zé)人工智能研發(fā)的團隊。人工智能是我們一切設(shè)計的核心。”該公司繼續(xù)把人工智能融入其TurboTax Live和QuickBooks Live產(chǎn)品中由人類金融專家提供的服務(wù),并在9月發(fā)布了Intuit Assist,這是該公司的生成式人工智能驅(qū)動財務(wù)助理,能夠在財捷的所有產(chǎn)品上工作。

Jasper AI公司

圖片來源:COURTESY OF JASPER

Jasper AI第一次收獲風(fēng)投公司IVP關(guān)注,是因為該公司內(nèi)部投資工具將Jasper的網(wǎng)站標(biāo)記為前1%潛在投資對象。“Jasper是我聽過唯一一個其他人當(dāng)成真人的軟件。”IVP投資Jasper的負(fù)責(zé)人卡提克·拉馬克里希南表示。“人們會說:‘他幫助我寫了一篇博客。’或者‘他幫助我更迅速地開展活動。’”

Jasper由前營銷人員和最好的朋友戴夫·羅根莫瑟、摩根大通(J.P. Morgan)和克里斯·霍爾創(chuàng)建,主要為了幫助其他營銷人員做廣告,付費客戶達(dá)10萬,其中不乏極為忠誠的粉絲。用戶使用該平臺可以撰寫文案、創(chuàng)建圖像,甚至選擇不同的品牌聲音。羅根莫瑟說,當(dāng)前挑戰(zhàn)是簡化各項功能,方便用戶選擇。剛開始Jasper基于OpenAI的技術(shù)構(gòu)建,如今已經(jīng)開始構(gòu)建自己的模型,因為該公司希望為企業(yè)客戶提供更多的定制產(chǎn)品。

盡管公司很年輕,成立于2021年年初,但Jasper在融資方面極其順利,a輪融資從Bessemer Venture Partners和HubSpot Ventures等風(fēng)投募集1.25億美元,而且以15億美元估值躋身獨角獸之列。羅根莫瑟表示,由于融資順利,Jasper員工在過去一年半里從9人增加到200多人。

LAION組織

圖片來源:COURTESY OF LAION

克里斯托夫·舒曼住在德國漢堡,是一位謙遜的高中教師。他同時也是人工智能領(lǐng)域最具影響力非營利組織之一的聯(lián)合創(chuàng)始人。2021年,舒曼和其他幾位兼職人工智能研究人員成立了LAION,簡稱“大規(guī)模人工智能開放網(wǎng)絡(luò)”。在OpenAI和谷歌等科技巨頭把持的人工智能領(lǐng)域,他們的非營利機構(gòu)希望實現(xiàn)開源,或者向他們之類研究人員免費提供。該團隊相當(dāng)成功。開發(fā)出流行的圖像生成器Stable Diffusion的Stability AI公司利用舒曼每天教授物理和計算機課之余管理的數(shù)十億對圖像轉(zhuǎn)文本數(shù)據(jù)集訓(xùn)練模型。舒曼表示,谷歌、Meta和微軟也使用LAION的數(shù)據(jù)訓(xùn)練人工智能算法。該非營利組織正在培訓(xùn)自己的開源模型。“我們不僅要努力實現(xiàn)數(shù)據(jù)民主化,也要努力實現(xiàn)模型和代碼民主化。”LAION的聯(lián)合創(chuàng)始人,住在德國慕尼黑的醫(yī)生羅伯特·卡茲馬克表示。不過LAION也面臨爭議。其數(shù)據(jù)包含成千上萬受版權(quán)保護的作品。根據(jù)歐盟的法律,LAION等非商業(yè)實體能夠使用受版權(quán)保護的材料從事數(shù)據(jù)挖掘。然而藝術(shù)家和版權(quán)所有者稱,LAION參與了“數(shù)據(jù)洗錢”,該組織向Stability和其他營利性伙伴出售或提供數(shù)據(jù)時,就已經(jīng)違反了歐盟數(shù)據(jù)挖掘方面法律的精神。

LangChain公司

Vanilla ChatGPT正如其名,確實有點普通(vanilla有缺乏創(chuàng)新,普普通通之意——譯注)。該工具生成各類風(fēng)格文字的能力令人印象深刻,然而到現(xiàn)在還未接入維基百科(Wikipedia),無法報告當(dāng)日天氣,也沒有最高法院最新判決的分析。不過,開發(fā)人員能夠?qū)⑼獠啃畔⒓虞d至聊天機器人,把質(zhì)量欠佳的回復(fù)內(nèi)容化腐朽為神奇。對于想實現(xiàn)流程自動化的新手來說,技術(shù)上可能有些困難,不過LangChain開發(fā)了相對方便使用的開源工具,可以充分使用大語言模型的強大功能。開發(fā)人員能夠?qū)⑻崾炬溄釉谝黄穑4嫣崾荆槿斯ぶ悄苣P吞峁┰L問外部數(shù)據(jù)庫的簡便方法。其中多項功能非常受歡迎,連OpenAI在新版本GPT工具中都有所借鑒。但是,尤其對于剛開始開發(fā)人工智能應(yīng)用的人,以及想使用OpenAI的GPT以外模型的人而言,LangChain確實為程序員提供了輕松構(gòu)建人工智能應(yīng)用的方法。Chase和Gola的開源項目吸引了大批開發(fā)者,風(fēng)投自然也不會錯過。LangChain由創(chuàng)始人哈里森·蔡斯和安庫什·戈拉于2022年10月創(chuàng)建,目前已經(jīng)從Benchmark和紅杉資本(Sequoia)募集至少3,000萬美元,上一輪LangChain的估值至少為2億美元。

Meta公司

圖片來源:COURTESY OF META

比起OpenAI、微軟和谷歌,社交媒體巨頭Meta在生成式人工智能革命中可能不算亮眼,不過該公司旗下人工智能研究實驗室有一些全球頂尖的深度學(xué)習(xí)人才。而且從審核Facebook上的內(nèi)容到把廣告推薦與Instagram用戶匹配,該公司在大語言模型方面的開創(chuàng)性工作在自家產(chǎn)品上發(fā)揮了關(guān)鍵作用。現(xiàn)在,該公司在開源生成式人工智能世界中同樣角色關(guān)鍵,已經(jīng)免費發(fā)布開源語言模型LLaMA(大語言模型元人工智能),多項功能看齊OpenAI的ChatGPT和谷歌的Bard。五個月后,Meta與微軟聯(lián)合發(fā)布了開源的Llama 2,免費用于商業(yè)用途或研究。Meta的首席人工智能科學(xué)家楊立昆在人工智能研究領(lǐng)域非常優(yōu)秀,也是“人工智能教父”之一。他強烈反對嚴(yán)格的人工智能監(jiān)管,尤其是可能導(dǎo)致開放式人工智能發(fā)展困難的規(guī)則。他也帶頭反對人工智能可能對人類構(gòu)成生存風(fēng)險,也因此與深度學(xué)習(xí)領(lǐng)域里其他的教父杰夫里·辛頓和約舒亞·本吉奧的觀點對立。6月,Meta宣布推出多項服務(wù),其中生成式人工智能語音模型Voicebox使用最短兩秒的音頻樣本就可以生成高質(zhì)量的文本轉(zhuǎn)換語音。最近,Meta宣布了人工智能模型模擬器Habitat 3.0,希望將實體機器人訓(xùn)練成擅長社交的智能助理。公司還獲得了帕里斯·希爾頓到史努比·狗狗等知名人物的形象許可,推出了多款具有獨特風(fēng)格的人工智能聊天機器人。

微軟(Microsoft)

圖片來源:COURTESY OF MICROSOFT

OpenAI研發(fā)出ChatGPT固然值得稱贊,但如果沒有當(dāng)初微軟數(shù)十億美元的投資,斷然不可能實現(xiàn)。據(jù)報道,到目前為止,微軟已經(jīng)向OpenAI投入130億美元,并建立了全球最大的超級計算集群之一,以幫助OpenAI訓(xùn)練規(guī)模更大、能力也更強大的人工智能模型。微軟的聊天機器人和搜索引擎Bing Chat根據(jù)OpenAI的模型構(gòu)建,首次亮相以來用戶使用該機器人已經(jīng)聊天超過10億次,能夠根據(jù)用戶提示轉(zhuǎn)化圖像的Bing Image Creator生成圖像超過10萬張。然而,必應(yīng)結(jié)合人工智能并未實現(xiàn)微軟搜索業(yè)務(wù)大翻身:必應(yīng)在全球搜索市場份額依舊停留在3%左右,谷歌的份額為91%。不過對微軟來說,生成式人工智能更重要的勝利在云業(yè)務(wù)方面。微軟向Azure云客戶提供OpenAI技術(shù),推動該科技巨頭銷售額和利潤增長超過華爾街預(yù)期,在截至今年9月的財季,生成式人工智能為云收入增長貢獻(xiàn)約為3%。從PowerPoint到Outlook,微軟在核心業(yè)務(wù)辦公軟件產(chǎn)品中均已經(jīng)添加人工智能輔助功能,還增加了人工智能編碼助理GitHub Copilot等產(chǎn)品。

Midjourney公司

圖片來源:COURTESY OF MIDJOURNEY

教皇穿上時髦的白色羽絨服什么樣?美國前總統(tǒng)唐納德·特朗普被捕會是怎樣的場景?現(xiàn)在有了Midjourney,人們再也不必將想象停留在腦海——只用幾分鐘就可以呈現(xiàn)在眼前。這家位于美國舊金山的研究實驗室成立還不到兩年,正是過去一年某些瘋狂傳播的人工智能生成照片的幕后推手,也是同名廣受歡迎的文本圖像生成系統(tǒng)開發(fā)方。用戶提供文本提示,就能夠使用Midjourney創(chuàng)建高度逼真的圖像。不過該工具也是人工智能生成照片這一規(guī)則模糊新世界里的爭議中心,有人批評稱特朗普和其他名人以假亂真的圖片可能用于散布政治虛假信息,藝術(shù)家們強烈反對使用受版權(quán)保護的作品培訓(xùn)Midjourney,也有人擔(dān)心該工具會減少付費商業(yè)插圖和攝影作品數(shù)量,削減企業(yè)將向藝術(shù)家和攝影師支付的圖片費用。今年早些時候,Midjourney創(chuàng)作的一張照片獲得了重要的攝影獎,當(dāng)時多位攝影師十分憤怒。該實驗室還因為審核標(biāo)準(zhǔn)而受到抨擊,一些人批評其標(biāo)準(zhǔn)不一致。今年早些時候,創(chuàng)始人及首席執(zhí)行官大衛(wèi)·霍爾茨說:“我們正在聽取專家和社區(qū)的大量反饋和想法,努力多思考。”去年霍爾茨曾經(jīng)表示,該實驗室創(chuàng)立時間并不長,就已經(jīng)在文本轉(zhuǎn)換圖像領(lǐng)域取得了巨大進步,“目標(biāo)是讓人類更有想象力,而不是研發(fā)富有想象力的機器。”有趣的是,該實驗室一直未接受風(fēng)險投資。

英偉達(dá)(Nvidia)

圖片來源:COURTESY OF NVIDIA

英偉達(dá)成立于1993年,然而沒有哪家公司像英偉達(dá)一樣順利乘上人工智能的東風(fēng)。英偉達(dá)是人工智能硬件領(lǐng)域的霸主,其圖形處理單元(GPU)芯片對大多數(shù)頂級人工智能模型訓(xùn)練至關(guān)重要(搜索巨頭谷歌的模型除外;其數(shù)據(jù)中心大多使用自家芯片。)作為重要的人工智能公司,截至2023年11月2日,英偉達(dá)的股票在今年已經(jīng)驚人地飆升289%。英偉達(dá)旗下還有廣受歡迎且支持全面的CUDA軟件系統(tǒng),開發(fā)人員可以相對容易地對GPU編程。其芯片性能相當(dāng)強勁,市場份額迅速壯大,其他芯片制造商只能在后面費力追趕。雖然英偉達(dá)最知名的業(yè)務(wù)是芯片,但近20年來該公司一直投資人工智能軟件,僅過去十年就在研發(fā)上花費了300億美元。英偉達(dá)開始直接向企業(yè)客戶提供自己的人工智能模型和人工智能云服務(wù),導(dǎo)致與一些最大客戶,比如微軟Azure等“超大規(guī)模”云提供商展開正面競爭。英偉達(dá)針對人工智能和生物技術(shù)推出了兩項大語言模型云服務(wù),開發(fā)者能夠使用其大語言模型創(chuàng)建內(nèi)容。

OpenAI公司

圖片來源:COURTESY OF OPENAI

2022年11月,OpenAI推出ChatGPT,震驚了世界。轉(zhuǎn)眼來到今年11月中旬,上周末瘋狂的董事會大戲中聯(lián)合創(chuàng)始人薩姆·奧爾特曼突然離職,再次震驚了商業(yè)和科技界。目前還不清楚OpenAI人事動蕩的最終結(jié)果。正如《財富》雜志報道,正因為OpenAI的公司架構(gòu)不同尋常,權(quán)力斗爭才有可能出現(xiàn)。OpenAI成立于2015年,當(dāng)初是非營利組織(后來增加了一個利潤有上限的部門),由埃隆·馬斯克(后來與公司決裂)和現(xiàn)任前首席執(zhí)行官奧爾特曼等科技企業(yè)家組成。OpenAI與人工智能其他公司類似,目標(biāo)是創(chuàng)建通用人工智能,即可以完成需要智力的任務(wù)的單獨人工智能,有些跟人類水平相當(dāng),有些能夠完成得更好。據(jù)報道,僅過兩個月,ChatGPT的月活用戶就達(dá)到1億,成為截至當(dāng)時增長最快的消費者應(yīng)用程序。OpenAI的最新版本GPT-4 Turbo是迄今功能最強大的通用大語言基礎(chǔ)模型,購買ChatGPT Plus服務(wù)的付費用戶和API企業(yè)客戶都可以訪問。從寫代碼到寫劇本,GPT-4 Turbo什么都會做,還能夠創(chuàng)建圖像,根據(jù)冰箱里食物的照片倒推食譜,還可以使用越來越多的互聯(lián)網(wǎng)連接工具。GPT-4另一版本加入了微軟的搜索引擎必應(yīng)。OpenAI宏大的愿景也順利募集到龐大規(guī)模的資金,其中僅微軟就提供了130億美元。不過該公司的創(chuàng)新也面臨審查,包括政府的審查、審查其技術(shù)的能力,以及該用哪些法規(guī)管理和控制。該公司還面臨很多侵犯版權(quán)和數(shù)據(jù)隱私泄露的訴訟。不管奧爾特曼和OpenAI團隊其他成員的最終結(jié)局如何,可以打賭全世界必會關(guān)注。

Palantir公司

圖片來源:COURTESY OF PALANTIR

這家規(guī)模龐大的數(shù)據(jù)挖掘和軟件公司成立于2003年,最大客戶包括多家政府、軍隊和情報機構(gòu),PayPal的彼得·蒂爾也是創(chuàng)始人之一。Palantir在人工智能領(lǐng)域深耕多年;去年,烏克蘭軍隊對抗俄羅斯的戰(zhàn)爭中就使用了其工具。最近人工智能大熱,對這家總部位于美國丹佛的公司技術(shù)需求也同步激增。2023年4月,Palantir推出了人工智能平臺,能夠使用人工智能分析各種現(xiàn)實場景中的數(shù)據(jù)。今年早些時候,首席執(zhí)行官及聯(lián)合創(chuàng)始人亞歷克斯·卡普表示,人工智能工具“市場無限”。由于對其平臺需求激增,2023年前六個月,Palantir的股價翻了一番。該公司對未來幾個月相當(dāng)樂觀,因為今年5月,公司預(yù)測每個季度都會盈利。盡管Palantir的人工智能工具功能強大,也有巨大潛力,但卡普堅持認(rèn)為技術(shù)將繼續(xù)“從屬于”創(chuàng)造者,并不會成為獨立的強大力量。與多家科技公司一樣,Palantir采取了一系列成本削減措施,包括裁員約2%,在云技術(shù)方面降低支出等。

PathAI公司

圖片來源:COURTESY OF PATHAI

近幾十年來,現(xiàn)代醫(yī)學(xué)發(fā)展迅速,然而一些關(guān)鍵部分,例如醫(yī)生檢查細(xì)胞以診斷癌癥等疾病的病理學(xué)仍舊依賴人眼,而人眼有時會犯錯。這正是人工智能大顯身手之處。總部位于美國波士頓的PathAI利用機器學(xué)習(xí)和人工智能算法幫助病理學(xué)家和研究人員更準(zhǔn)確、更高效地分析細(xì)胞圖像,發(fā)現(xiàn)新的生物標(biāo)志物,協(xié)助診斷和未來的藥物開發(fā)。該公司根據(jù)450多名病理學(xué)家的專有眾包數(shù)據(jù)開發(fā)算法。PathAI稱,超過45家制藥和生物技術(shù)公司、3,500家供應(yīng)商和50個實驗室正在使用其技術(shù)。PathAI主要跟治療癌癥、肝病和腸道綜合征的醫(yī)生合作。首席執(zhí)行官安迪·貝克本人也是經(jīng)認(rèn)證的病理學(xué)家,他預(yù)測10年后病理學(xué)家“不會像現(xiàn)在一樣針對單個細(xì)胞計數(shù)或手動測量。所有低級別的工作都會提前完成,人工智能系統(tǒng)可以提供具體建議,‘診斷如下,推薦的護理方向如下。’”他對《財富》雜志表示。貝克還告訴《財富》雜志,PathAI的平臺已經(jīng)用于開發(fā)新藥,處于臨床試驗各個階段。General Atlantic和D1 Capital Partners等投資人也發(fā)現(xiàn)了PathAI技術(shù)的前景,為這家初創(chuàng)公司投入超過3.5億美元。最近,該公司宣布了Nash Explore和IBM Explore等新產(chǎn)品,主要利用人工智能對八種類型的癌癥和潰瘍性結(jié)腸炎標(biāo)志物實施分類。

Perplexity公司

圖片來源:COURTESY OF PERPLEXITY

Perplexity總部位于美國舊金山,正在基于人工智能聊天努力構(gòu)建堪與谷歌搜索和微軟必應(yīng)媲美的生成式搜索引擎。該公司創(chuàng)立于2022年,創(chuàng)始人包括阿拉溫德·斯里尼瓦斯、丹尼斯·雅拉特、約翰尼·何,以及安迪·康溫斯基,創(chuàng)始團隊成員曾經(jīng)在科技公司積累人工智能和基于機器學(xué)習(xí)的角色方面經(jīng)驗。該公司報告稱,僅在今年2月,其月訪問量就達(dá)到1,000萬,獨立訪客達(dá)到200萬人。該公司的界面更像是聊天屏幕,Perplexity聲稱其提供的答案準(zhǔn)確得多,而且比其他一些聊天機器人搜索引擎產(chǎn)生幻覺的概率更低。今年3月,Perplexity在蘋果(Apple)的iOS上推出平臺,六天內(nèi)下載量超過了10萬次。斯里尼瓦斯表示,“Perplexity”不同之處在于,能夠很好地平衡搜索結(jié)果排名和使用大語言模型生成總結(jié)的簡短答案,答案均引用來源,用戶也可以提出后續(xù)問題。該公司計劃提供付費功能,以實現(xiàn)盈利。Perplexity在需求很高的人工智能搜索領(lǐng)域面臨著諸多的競爭,不過該公司獨特之處在于已經(jīng)成功吸引圖靈獎(Turing Award)的得主楊立昆和谷歌人工智能研究負(fù)責(zé)人杰夫·迪恩等行業(yè)資深人士注意。到目前為止,該公司已經(jīng)融資超過2,800萬美元,正在與Instacart和Klarna就將對話搜索整合到各自旗下平臺展開談判。

Pinecone公司

圖片來源:COURTESY OF PINECONE

人類并非無所不知,但人類能夠在教科書、在線數(shù)據(jù)庫和百科全書中搜索,找到幾乎無限量信息。同樣,當(dāng)用戶需要人工智能模型中并未收納的信息時,模型需要自行研究。這就是Pinecone和矢量數(shù)據(jù)庫發(fā)揮作用的地方。創(chuàng)始人及首席執(zhí)行官埃多·利伯緹表示,每個值得一試的人工智能應(yīng)用程序都有可以用來定位查詢信息的數(shù)據(jù)庫,比如蘋果股票的當(dāng)前價格或銀行客戶名冊上的非公開數(shù)據(jù)等。Pinecone為包括微軟和CVS等大小公司開發(fā)基礎(chǔ)設(shè)施,打造各自的矢量數(shù)據(jù)庫,為其人工智能模型提供所謂的“長期記憶”。利伯緹稱,2022年年初推出后運營第一年,Pinecone的客戶群從零增長到170,銷售額超過200萬美元。Crunchbase的數(shù)據(jù)顯示,2023年4月,該公司以7.5億美元估值募集了1億美元,這家總部位于美國舊金山的初創(chuàng)公司募集資金總額也達(dá)到1.38億美元。

Profluent公司

圖片來源:COURTESY OF PROFLUENT

Profluent公司的首席執(zhí)行官阿里·馬達(dá)尼表示,尋找能夠治療疾病的化學(xué)分子無異于海底撈針。馬達(dá)尼稱,就像使用大型語言模型培訓(xùn)ChatGPT預(yù)測問題的正確答案一樣,有著類似設(shè)計的人工智能模型有望“學(xué)習(xí)自然的基礎(chǔ)語言,繼而解決人類健康和環(huán)境領(lǐng)域最具挑戰(zhàn)性的問題。”他與加州大學(xué)舊金山分校(UCSF)、斯坦福大學(xué)(Stanford University)和業(yè)內(nèi)的科學(xué)家一道,耗費了數(shù)年的時間研究這一問題,以測試人工智能設(shè)計的蛋白質(zhì)是否有用。他們發(fā)明的這項技術(shù)可以打造功能性蛋白質(zhì),《自然生物》(Nature Biotech)期刊上發(fā)表的一則同行評議論文對這類蛋白質(zhì)進行了詳細(xì)介紹。這些人工智能設(shè)計的蛋白能夠被用于醫(yī)藥發(fā)現(xiàn)以及其他生物科技部門。受此前景啟發(fā),馬達(dá)尼創(chuàng)建了Profluent,而且是單槍匹馬,其團隊成員由生物和機器學(xué)習(xí)領(lǐng)域的科學(xué)家、技術(shù)人員和企業(yè)家構(gòu)成。在2023年1月成立并獲得Insight Partners領(lǐng)投的900萬美元種子輪資金之后,該團隊的陣容有望繼續(xù)壯大。Insight Partners的董事總經(jīng)理迪蘭·莫里斯說:“即便蛋白質(zhì)結(jié)構(gòu)預(yù)測領(lǐng)域在人工智能的驅(qū)動下于近期出現(xiàn)了諸多突破,但Profluent的成就尤為卓著。”

Replika公司

圖片來源:COURTESY OF REPLIKA

Replika的創(chuàng)始人及首席執(zhí)行官尤金妮亞·庫伊達(dá)表示:“我們正面臨著最嚴(yán)重的孤獨危機。”此前從事記者工作的庫伊達(dá)希望借助Replika來對抗孤獨。Replika是其創(chuàng)建的人工智能伴侶公司,成立于2017年,為用戶提供了反烏托邦式(或烏托邦式,取決于個人看法)電影《Her》中的些許體驗。在這部電影里,演員杰昆·菲尼克斯愛上了其人工智能助理。Replika用戶可以打造其專屬的虛擬朋友,定制其外貌,并長時間地與其聊天。截至2023年10月,這款應(yīng)用程序的月用戶達(dá)到了約200萬,付費訂閱用戶達(dá)到了25萬。Crunchbase稱,公司從私人投資者手中籌集了近1,100萬美元。與OpenAI這類人工智能大拿相比,這點資金可謂是不足為道。然而,Replika對虛擬友誼的推銷引發(fā)了巨大的媒體轟動,尤其是有報道稱,其用戶傾向于將其人工智能朋友轉(zhuǎn)變?yōu)榛セ莼ダ娜斯ぶ悄芘笥选?023年2月,公司取消了用戶參與情色角色扮演的功能,但在社區(qū)的強烈呼吁下,公司又恢復(fù)了這一功能,并允許在2023年2月之前注冊的用戶繼續(xù)與其聊天機器人卿卿我我。Replika還推出了Blush這款應(yīng)用程序,專為希望與人工智能聊天機器人“約會”的用戶打造。庫伊達(dá)稱,線上戀愛一開始也被人們貼上不正經(jīng)的標(biāo)簽,但后來這種看法完全消失了,因此她認(rèn)為,人們對與人工智能機器人談戀愛的成見也會隨著時間的流逝而消失。

Runway公司

圖片來源:COURTESY OF RUNWAY

從過去到現(xiàn)在,制作一部電影是一個既耗時又耗資本的過程,對于一位剛?cè)胄械碾娪爸破率侄裕毩⒌爻晒ν瓿梢徊侩娪暗呐臄z是不可能的事情。然而,初創(chuàng)公司Runway的創(chuàng)始人將改變這一現(xiàn)狀。這家公司因為其幫助打造大熱文字轉(zhuǎn)圖像模型Stable Diffusion而聲名鵲起。它最近推出了首款面向公眾的文字轉(zhuǎn)視頻平臺Gen-2。公司當(dāng)前為制作公司、新聞刊物、獨立內(nèi)容創(chuàng)作者提供超過35款人工智能視頻編輯工具。Runway還允許電影拍攝者和藝術(shù)家等創(chuàng)意人士生成所有的畫面和場景。值得一提的是,多部電影的部分場景均采用了這項技術(shù)進行編輯,包括《瞬息全宇宙》(Everything Everywhere All at Once)。該公司的發(fā)言人稱,該產(chǎn)品的一些客戶包括紐百倫(New Balance)、哥倫比亞廣播公司(CBS)和Vox。2023年6月,Runway在C輪擴展融資中籌集了1.41億美元,估值達(dá)到了15億美元,參與投資的公司包括谷歌、英偉達(dá)和Salesforce Ventures。公司最近公布了新的研究,詳細(xì)介紹了在從文字生成圖像過程中減少其模型偏見的方式,同時發(fā)布了“導(dǎo)演模式”,給予用戶更多的場景生成控制權(quán)。

賽富時(Salesforce)

圖片來源:COURTESY OF SALESFORCE

這家基于云的客戶關(guān)系管理平臺自2016年以來一直在通過其人工智能平臺Einstein使用人工智能技術(shù)。為了給客戶和雇員提供更多的服務(wù),賽富時宣布,公司將把2023年3月發(fā)布的Einstein GPT與ChatGPT制造商OpenAI進行整合。Einstein機器人的一些主要用戶包括一級方程式賽車(利用這項技術(shù)提供個性化的車迷體驗),以及古馳(Gucci,采用該技術(shù)處理面向客戶的業(yè)務(wù))。賽富時還經(jīng)營著一項專注于生成式人工智能的風(fēng)投資本業(yè)務(wù),公司借助這項業(yè)務(wù)計劃在該技術(shù)領(lǐng)域投資5億美元。在賽富時的人工智能擴張之旅中,數(shù)據(jù)安全一直是重中之重,只有這樣,大型語言模型才不會在不經(jīng)意間泄露客戶的數(shù)據(jù)。這家公司采取了“人機回圈”的做法,也就是生成式人工智能將參與預(yù)防人工智能的濫用,并防止可能會對客戶帶來不利影響的人工智能幻覺。2023年3月,此前賽富時服務(wù)云業(yè)務(wù)負(fù)責(zé)人史宗瑋被任命為人工智能業(yè)務(wù)執(zhí)掌者。公司期待通過人工智能來推動業(yè)務(wù)增長,并已經(jīng)引入了一整套工具來幫助企業(yè)運用生成式人工智能的力量,例如AI Cloud。馬克·貝尼奧夫預(yù)計,短信息平臺Slack將成為此次人工智能行動的重要組成部分。賽富時還開展了多項交易,比如收購美國加州的Airkit.ai公司,并拓展了其與亞馬遜云科技(AWS)、谷歌和Databricks的合作關(guān)系,以進一步推動其策略。

Scale AI公司

圖片來源:COURTESY OF SCALE

人工智能可以自動運行,但要達(dá)到像ChatGPT這類聊天機器人的先進程度,則需要人類的幫助,而且是海量人力的幫助。盡管OpenAI ChatGPT背后的大型語言模型(LLM)或Anthropic的Claude會自行學(xué)習(xí)語言背后的數(shù)據(jù)關(guān)聯(lián),但要引導(dǎo)和完善這些模型通過聊天機器人界面做出的反饋,各大公司采用了一個名為“基于人類反饋的強化學(xué)習(xí)”的流程。在這個流程中,人類評估者會判斷模型的回答是否是有用、有益和“安全”(通常意味著不會讓人反感或用于傷害他人)。然后,這個模型會因為給出近似于人類評估者所認(rèn)為的好答案而獲得獎勵。然而,所有這一切都需要人力。Scale也因此而有了用武之地,其整個業(yè)務(wù)就是提供人工智能公司所需的數(shù)據(jù)標(biāo)簽。通常,這些制作標(biāo)簽的人都處于發(fā)展中國家,薪資很低。科技博客The Verge稱,例如在肯尼亞,硅谷寵兒Scale AI付給人工模型培訓(xùn)員工的工資在1美元至3美元之間。(一位發(fā)言人稱,這家公司在其經(jīng)營國都會遵守最低薪資法律。)Scale由亞歷山大·王創(chuàng)立于2016年,當(dāng)時他還只有19歲。Scale是很多全球最先進人工智能模型背后的數(shù)據(jù)專家,包括多家自動駕駛汽車公司所使用的模型,并為國防決策提供支持。公司也因此而聲名大噪。這些任務(wù)通常十分簡單而且異常枯燥:發(fā)現(xiàn)零售產(chǎn)品的特征,或識別圖中的物體。盡管Scale在一開始為自動駕駛算法標(biāo)記圖片數(shù)據(jù)中的物體,但它如今拓展了其培訓(xùn)內(nèi)容,并面向廣泛的人工智能模型,其客戶包括Etsy、Instacart、Meta,當(dāng)然還有OpenAI。借助人工智能熱潮,公司共計籌集了約6億美元資金,其最近的估值達(dá)到了73億美元。然而,首席技術(shù)官維賈伊·卡魯納穆爾蒂表示,Scale也在開發(fā)自己的人工智能算法,并打算在尋找外行人之余聘請專業(yè)度更強的專家來培訓(xùn)人工智能模型,比如古亞拉姆語權(quán)威人士。“專家反饋對于幫助模型構(gòu)建思維模式來說異常重要。”

Snorkel AI公司

圖片來源:COURTESY OF SNORKEL

Snorkel AI的聯(lián)合創(chuàng)始人及首席執(zhí)行官亞歷山大·拉特納說:“數(shù)據(jù)往往被人們忽視了,通常會被當(dāng)作一個上游清潔流程。”盡管費力走過這片統(tǒng)計池沼并不是什么光彩的事情,但拉特納的初創(chuàng)企業(yè)已經(jīng)吸引了私營投資者足夠多的目光,籌集了1.35億美元,截至其2021年8月的最后融資輪,公司的估值達(dá)到了10億美元。這家初創(chuàng)企業(yè)一開始是2015年斯坦福大學(xué)人工智能實驗室(Stanford AI Lab)的一個研究項目。公司客戶包括Wayfair、紐約梅隆銀行(BNY Mellon)和紀(jì)念斯隆-凱特琳癌癥中心(Memorial Sloan Kettering)。本質(zhì)上,Snorkel AI使用人工智能來幫助培訓(xùn)人工智能。每一個人工智能模型都會從數(shù)據(jù)組學(xué)習(xí),通常都是TB級的數(shù)據(jù)組。為了塑造這些數(shù)據(jù)組,Snorkel使用其自有的人工智能算法以及人力。像記者、網(wǎng)絡(luò)技術(shù)人員、或醫(yī)生這類專家會教授Snorkel的模型如何標(biāo)記、清理和塑造數(shù)據(jù)。例如,一位醫(yī)生會教人工智能如何更好地區(qū)分超聲波,而且會教授數(shù)次。拉特納稱,此舉能夠加速數(shù)據(jù)的標(biāo)記和編排,該流程比傳統(tǒng)的技術(shù)快10倍至100倍。他說:“在過去九年中,這種不怎么體面的、混亂的數(shù)據(jù)清理工作一直都是我們的主要賣點。”

Stability AI公司

圖片來源:COURTESY OF STABILITY AI

Stability AI最知名的壯舉莫過于幫助打造了大熱文字轉(zhuǎn)圖像生成系統(tǒng)Stable Diffusion。用戶可以在其中輸入提示,然后生成一幅他們心目中任何事物的人工智能圖像。不過,這家公司還從事著大量其他人工智能項目,均為開源模型,意味著所有人都能夠訪問這些模型。今年春季,Stability發(fā)布了兩款語言模型:StableLM與Stable Vicuna。公司稱,還將發(fā)布其他兩款圖像模型。同時,公司還打造了一款文字轉(zhuǎn)音頻模型,名為Stable Audio,已經(jīng)于今年9月發(fā)布。Stability很早便發(fā)聲支持人工智能開源,也就是人們能夠免費訪問整個模型、所有其代碼和權(quán)重數(shù)據(jù),以及所有的輸出內(nèi)容,而且?guī)缀鯖]有限制。一些大投資者已經(jīng)開始為這家初創(chuàng)企業(yè)的理念買單。PitchBook的數(shù)據(jù)顯示,Stability已經(jīng)籌集了超過1.1億美元,投資者包括Coatue Management和Lightspeed Venture Partners等。公司稱,超過20萬創(chuàng)作者、開發(fā)人員和研究人員,以及7個研究中心都在使用Stability的產(chǎn)品。然而,Stability及其創(chuàng)始人伊馬德·莫斯塔克最近也遭到了審查:據(jù)稱,莫斯塔克以前就愛說大話。福布斯(Forbes)的調(diào)查發(fā)現(xiàn),在莫斯塔克有關(guān)自己背景和Stability客戶的多項言論中,一部分是假的,而剩余部分都存在夸大之處。據(jù)稱,諸多資深高管和人工智能專家在今年離開了公司。然而,公司稱整體員工數(shù)在增加,而且其收入基數(shù)在今年翻了10倍多。Stability在今年11月初又迎來了好消息,因為莫斯塔克于X上發(fā)布:“在上個月,我們靠自己完成了戰(zhàn)略融資(即將發(fā)布聲明)。”彭博社隨后報道稱,Stability獲得了5,000萬美元的債務(wù)融資,由英特爾領(lǐng)投。不過,彭博社還指出,Coatue Management和Lightspeed與莫斯塔克在Stability的管理和發(fā)展方向上產(chǎn)生了分歧,并于隨后拒絕向該公司提供進一步的融資,同時放棄了其在公司董事會的席位。

Sudowrite公司

圖片來源:COURTESY OF SUDOWRITE

“這么說可能有爭議,但我認(rèn)為生成式人工智能的日常用戶不應(yīng)該使用Sudowrite。”Sudowrite投資方之一、Garuda Ventures的聯(lián)合創(chuàng)始人里希·塔帕里亞表示。不過,塔帕里亞的觀點進一步證明了Sudowrite更重視為專業(yè)作家服務(wù),對市場規(guī)模有限則沒有那么關(guān)注。Sudowrite自稱創(chuàng)意寫作的人工智能平臺。其設(shè)置有助于劇本和小說創(chuàng)作,也能夠完成檢查情節(jié)節(jié)奏和改寫對話等特定任務(wù)。不同于生成式人工智能常見的滿屏文字,軟件布局添加了人物圖片和交互式時間線等視覺元素,方便整理大綱。

Sudowrite的聯(lián)合創(chuàng)始人阿米特·古普塔和詹姆斯·余在寫作小組中相識,當(dāng)時兩人都賣掉了之前的公司在休假。古普塔表示,目前該平臺已經(jīng)有1.2萬名付費用戶,每月的訂閱費用從10美元到100美元不等。古普塔對《財富》雜志表示,目前Sudowrite只募集300萬美元,還沒有繼續(xù)募資的計劃。

Synthesia公司

圖片來源:COURTESY OF SYNTHESIA

在人工智能熱潮中,人工智能視頻創(chuàng)作平臺Synthesia一躍成為獨角獸。該公司創(chuàng)立于2017年,四位創(chuàng)始人曾經(jīng)在倫敦大學(xué)學(xué)院(UCL)、斯坦福大學(xué)、慕尼黑工業(yè)大學(xué)(TUM)和劍橋大學(xué)(University of Cambridge)求學(xué)。其產(chǎn)品利用人工智能主要為教學(xué)視頻創(chuàng)建視頻形象,為企業(yè)客戶節(jié)省了時間和制作成本。截至2023年6月,該平臺已經(jīng)為5萬家企業(yè)生成超過1,200萬個視頻,其中包括近一半《財富》美國100強企業(yè),相關(guān)企業(yè)使用Synthesia在幾分鐘內(nèi)就可以制作產(chǎn)品營銷和教學(xué)視頻。公司業(yè)務(wù)增速高達(dá)456%,難怪在Accel領(lǐng)導(dǎo)的C輪融資中順利籌集到9,000萬美元,還獲得英偉達(dá)風(fēng)投部門的投資。“Synthesia最重要的理念之一是實用性而非求新。雖然過去六個月出現(xiàn)了因為炒作而造成的波動,但我認(rèn)為這一輪熱潮和投資者的興趣在很大程度上證明了人工智能技術(shù)背后強大的商業(yè)基本面。”首席執(zhí)行官及聯(lián)合創(chuàng)始人維克多·里帕貝利告訴彭博社。今年6月,Synthesia的C輪融資募集了9,000萬美元,其中英偉達(dá)的風(fēng)投部門對其估值為10億美元。頗具爭議的是,根據(jù)《連線》(Wired)雜志報道,該公司創(chuàng)建的一些高度逼真的形象,特別是一個名為杰森的虛擬新聞主播,以及名叫達(dá)倫和蓋瑞的形象在馬里、布基納法索、委內(nèi)瑞拉被用于政治虛假信息宣傳活動,還出現(xiàn)在美國加州一個加密貨幣騙局廣告里。里帕貝利告訴《連線》雜志,后來該公司做了一些調(diào)整,盡力防止虛擬形象被用于虛假信息宣傳,具體舉措包括從面向消費者的賬戶中屏蔽與新聞相關(guān)的劇本,以及聘請內(nèi)容審核員審查用以生成虛擬形象的劇本等。

Together公司

圖片來源:COURTESY OF TOGETHER AI

人工智能需要堪比成千上萬臺電腦的龐大計算能力,如果使用云計算,亞馬遜云科技、谷歌云(Google Cloud)和微軟Azure就都是很難繞過的巨頭。聯(lián)合創(chuàng)始人及首席執(zhí)行官維普爾·韋德·普拉卡什表示,為挑戰(zhàn)巨頭的主導(dǎo)地位,Together“匯聚”小型云,為人工智能研究人員和開發(fā)人員提供同等水平的算力,成本可能只有云計算巨頭的五分之一。該公司由斯坦福大學(xué)的教授和科技行業(yè)資深人士領(lǐng)導(dǎo),2023年5月宣布獲得2,000萬美元的種子資金。Together將開發(fā)者的計算需求外包給其他數(shù)據(jù)中心,甚至是以前的比特幣(Bitcoin)礦工。公司還為普通開發(fā)者和想從頭開始搭建模型的人提供了全面的人工智能開發(fā)平臺。“OpenAI和谷歌的資源已經(jīng)夠集中了。”普拉卡什說。“所以我認(rèn)為,去中心化、更少鎖定的生態(tài)系統(tǒng)是有價值的。”

Tome公司

圖片來源:COURTESY OF TOME

想象一下PowerPoint——不過加上了人工智能。這就是2022年9月成立的初創(chuàng)公司Tome向投資者和客戶推銷的內(nèi)容。截至2023年7月,該公司已經(jīng)吸引到1,000多萬用戶,并以最新的3億美元估值募集到8,100多萬美元。歸根究底,Tome由兩位曾經(jīng)在Meta工作的主管創(chuàng)立,使用Stable Diffusion、ChatGPT等大模型,還有自己的專有人工智能為用戶生成自定義演示和圖像。不過該初創(chuàng)公司的聯(lián)合創(chuàng)始人及首席執(zhí)行官基思·佩里斯稱,他的愿景可不只是制作幻燈片。“就像濕陶土,能夠做成任何東西。”他談到Tome的產(chǎn)品時說。佩里斯指出,創(chuàng)建者不僅可以建立宣傳平臺推銷最新的人工智能工具,還能夠創(chuàng)建旅行指南、簡歷或小型網(wǎng)站。之前,Tome依賴人工智能模型生成普通的文本和圖像,但一位發(fā)言人表示,今后Tome將越來越多集成外部數(shù)據(jù),比如用戶谷歌賬戶里的文件,從而進一步完善人工智能生成的幻燈片。

You.com公司

圖片來源:COURTESY OF YOU

早在最近一波人工智能熱潮席卷全球之前,有家公司就已經(jīng)測試過人工智能聊天搜索。提示:You.com。該公司全新的搜索引擎使用生成式人工智能從事網(wǎng)絡(luò)搜索、內(nèi)容和圖像創(chuàng)建,而且非常重視用戶數(shù)據(jù)隱私。You創(chuàng)立于2020年,創(chuàng)始人理查德·索切爾曾經(jīng)在賽富時擔(dān)任首席科學(xué)家,賽富時的首席執(zhí)行官馬克·貝尼奧夫的Time Ventures牽頭提供了2,000萬美元種子資金。隨后,該公司獲得了2,500萬美元A輪融資,由Radical Ventures領(lǐng)投,Salesforce Ventures也追加了投資。1996年以來,該公司的域名一直歸貝尼奧夫所有且未被使用。You.com的搜索欄似乎跟谷歌相似,不過相似之處也僅限于此。此前索切爾就曾經(jīng)指谷歌保護隱私的手段“相當(dāng)糟糕”。該公司在搜索和隱私領(lǐng)域還有幾家競爭對手,比如DuckDuckGo,不過You將數(shù)據(jù)隱私和生成式人工智能功能結(jié)合的做法脫穎而出。2023年6月,該公司為推動產(chǎn)品變現(xiàn)推出了名叫YouPro的付費訂閱服務(wù),付費用戶每月支付9.99美元,便可以無限量地訪問人工智能聊天和其他生成式人工智能功能,而且沒有廣告。今年9月,該公司在WhatsApp上推出了一項人工智能搜索功能,正式把對話搜索功能整合入全球最流行的通訊應(yīng)用程序之一里。(財富中文網(wǎng))

譯者:Biz、Feb

人工智能是否會創(chuàng)造一個沒有人類工作的世界?計算機能否達(dá)到人類的智力水平?OpenAI的鬧劇會迎來怎樣的結(jié)局?人工智能領(lǐng)域的戲劇性變化證明,讀者和投資者需要密切關(guān)注這個領(lǐng)域,因為這個領(lǐng)域瞬息萬變。委婉地說,與人工智能技術(shù)有關(guān)的預(yù)測、想法和執(zhí)行五花八門。但對于這個剛剛起步的行業(yè),我可以確信的一點是:投資者和大大小小的公司都在認(rèn)真對待它。微軟(Microsoft)因為與OpenAI的關(guān)系,是主要參與者之一。該公司最近發(fā)現(xiàn),在人工智能領(lǐng)域每投資1美元,就能夠獲得3.5美元的回報。Crunchbase表示,今年在美國初創(chuàng)公司投資的每4美元中,就有1美元投給了人工智能公司;現(xiàn)在已經(jīng)有約200家人工智能獨角獸公司。但凡是經(jīng)歷過炒作周期的人都知道,即使在最熱門的行業(yè),慘敗的例子也遠(yuǎn)遠(yuǎn)超過大獲成功的公司的數(shù)量。為了評選首期《財富》全球人工智能創(chuàng)新者50強榜單,我們征求了風(fēng)險投資家、行業(yè)分析師和我們強大的人工智能專家團隊的意見,評選出位于人工智能創(chuàng)新前沿的公司。我們確定的一點是:這些公司所做的工作不僅會塑造人工智能的未來,還會影響我們生活的世界。

Abnormal Security公司

當(dāng)ChatGPT在2022年11月發(fā)布之后,伊凡·賴澤爾的第一反應(yīng)是:這是一項驚人的技術(shù)。他回憶道,然后他的想法是:“天哪,壞人也會得到這項技術(shù)。”2018年,賴澤爾與桑杰伊·杰亞古瑪合作創(chuàng)建了Abnormal Security,以幫助檢測和防止電子郵件網(wǎng)絡(luò)攻擊。該公司使用人工智能和機器學(xué)習(xí)進行行為分析,分析Slack等公司平臺的數(shù)據(jù),以幫助發(fā)現(xiàn)利用社交工程的電子郵件詐騙,并確定信息是由真實的員工發(fā)送,還是由黑客假冒員工發(fā)送。賴澤爾表示,ChatGPT和其他聊天機器人的爆火,增加了電子郵件攻擊的復(fù)雜性。但Abnormal計劃與電子郵件攻擊長期作戰(zhàn):今年早些時候,該公司整合了職場軟件Slack、Zoom和Microsoft Teams,并計劃增加賽富時(Salesforce)或ServiceNow等其他平臺。該公司稱,其客戶包括12%的《財富》美國500強公司。最近,公司宣布年度經(jīng)常性收入突破了1億美元。該公司還吸引了大量投資:Abnormal從Insight Partners、Greylock Partners和Menlo Ventures等投資者融資超過2.8億美元,估值達(dá)到40億美元。多年來,賴澤爾一直沒有認(rèn)真考慮IPO計劃。他指出,公司目前的主要任務(wù)是更好地保護客戶,而且公司可能在幾年內(nèi)上市。

Absci公司

2011年,Absci的創(chuàng)始人及首席執(zhí)行官肖恩·麥克萊恩并沒有打算創(chuàng)建一家利用人工智能來開發(fā)藥物的公司。他計劃尋找一種設(shè)計蛋白質(zhì)的方法,以找到更多有效的治療藥物。但他最終開發(fā)出一種收集基于蛋白質(zhì)的數(shù)據(jù)的技術(shù),大語言模型可以利用這些數(shù)據(jù)預(yù)測最有效的解決生物學(xué)問題的藥物。濕實驗室能夠在六周內(nèi)生成和測試300萬個人工智能生成的藥物設(shè)計。該公司創(chuàng)造的一種免疫抗體(麥克萊恩拒絕透露這種抗體針對的疾病),預(yù)計可以在2025年投入使用。Absci在2021年上市,股價在一周內(nèi)從16美元上漲至28.48美元,公司估值超過20億美元。但這是其股價的最高點,因為在隨后一年股價暴跌,自2022年5月以來一直低于每股5美元。2022年8月,該公司經(jīng)過一次重組,并進行了裁員。

Adept AI公司

Adept AI是正在開發(fā)下一代人工智能商務(wù)助理的公司之一。人工智能不僅能夠生成文字,還可以使用高管電腦上的所有軟件,為高管執(zhí)行任務(wù)和分析。位于美國舊金山的初創(chuàng)公司Adept AI將其聯(lián)合創(chuàng)始人、谷歌(Google)前研究員大衛(wèi)·欒、尼基·帕瑪爾和阿希士·瓦斯瓦尼,稱為人工智能的忠實支持者。帕瑪爾和瓦斯瓦尼是谷歌Transformer模型發(fā)明團隊的成員,他們在2022年離開Adept,創(chuàng)立了另外一家初創(chuàng)公司。Transformer模型是大語言模型革命的基礎(chǔ)。但Adept依舊可能獲得巨大的成功。該公司在一年前低調(diào)成立,共獲得了4.15億美元風(fēng)險投資。

Adobe公司

創(chuàng)意設(shè)計與編輯巨頭Adobe在2022財年的營收達(dá)到176.1億美元。該公司在生成式人工智能領(lǐng)域引起了轟動。該公司有超過29,000名員工,你可能會認(rèn)為該公司對人工智能的開發(fā)會因此變得緩慢。但其首席技術(shù)官伊利·格林菲爾德表示,該公司很快利用多年的數(shù)據(jù)收集和研究,在一年內(nèi)就推出了Firefly。

這款工具有兩個特點。第一,它能夠與創(chuàng)意人士已經(jīng)使用的工具進行整合。Photoshop的用戶可以使用Generative Fill進行編輯,根據(jù)文本生成圖像,例如改變襯衫的圖案或者在照片中添加一個新的物品等。第二,該公司稱,生成的圖片能夠安全地用于商業(yè)用途,Adobe還承諾就任何版權(quán)侵權(quán)索賠向用戶提供賠償。Firefly使用該公司龐大的Adobe Stock內(nèi)容庫進行訓(xùn)練,該公司稱,其有權(quán)利使用這些內(nèi)容訓(xùn)練人工智能(盡管一些Adobe Stock的創(chuàng)作者抱怨稱,他們在上傳圖片時并未意識到他們對Adobe有過這種授權(quán))。Adobe正在考慮把生成式人工智能整合到Creative Cloud中的更多工具里。

今年10月,該公司發(fā)布了Firefly Image 2,這款工具提升了人工智能生成的圖片的質(zhì)量,并允許用戶選擇他們希望生成的圖片的特定風(fēng)格。格林菲爾德表示,下一個前沿領(lǐng)域是讓藝術(shù)家接受人工智能。在他設(shè)想的世界里,藝術(shù)家可以用自己的作品來訓(xùn)練人工智能,并將其對外授權(quán)。

Aligned AI公司

Aligned AI的內(nèi)容審查過濾器擊敗了OpenAI,從而一舉成名。據(jù)《財富》雜志的杰里米·卡恩報道, Aligned AI捕獲了97%的有問題回答,而OpenAI的捕獲率為32%。之后,它率先證明其人工智能模型能夠基于簡單的視頻游戲環(huán)境CoinRun,掌握具有挑戰(zhàn)性的人工智能安全和校準(zhǔn)基準(zhǔn)。安全從一開始就是Aligned AI的招牌。Aligned AI的聯(lián)合創(chuàng)始人及首席執(zhí)行官瑞貝卡·戈爾曼說:“你可以真正從邏輯的角度思考人工智能帶來的危險,并創(chuàng)建技術(shù)解決方案來解決這個問題。”戈爾曼和斯圖爾特·阿姆斯特朗于2021年12月在英國牛津創(chuàng)立了這家公司,他們的想法是人工智能的能力和安全不應(yīng)該是一場零和游戲。相反,他們相信,人工智能越安全,就會變得越有效,因為最終用戶會更信任它。

該公司仍然處于發(fā)展初期,在種子輪之前融資600,000英鎊(約合762,000美元),僅有六名員工。它目前正在加快招聘技術(shù)人員,希望與人工智能行業(yè)的參與者建立合作關(guān)系,為他們提供安全功能。戈爾曼表示,Aligned的目標(biāo)是與主要行業(yè)參與者合作,支持人工智能的每一種使用案例,比如質(zhì)量保證或機器人技術(shù)等。

對齊研究中心(Aligned Research Center)

作為榜單上的少數(shù)幾家非營利組織之一,對齊研究中心由OpenAI的前員工保羅·克里斯蒂安諾成立于2021年6月,其宗旨是研究“對齊問題”,即如何將人工智能的行動與人類的價值觀保持一致。隨著人工智能系統(tǒng)日益接近通用人工智能(AGI),這個任務(wù)變得更加艱巨。通用人工智能模型執(zhí)行所有認(rèn)知任務(wù)的效果,與人類相當(dāng)甚至比人類更出色。如果人工智能開始產(chǎn)生自己的意圖,即便這些意圖只是實現(xiàn)人類指定的主要目標(biāo)所需要的子目標(biāo),那么對齊就將變成一個緊迫的問題。ARC與OpenAI和Anthropic等大型人工智能公司合作,通過觀察模型對惡意行為者可能使用的提示詞的反應(yīng),對模型進行“紅隊”測試,并觀察模型本身是否會有潛在危險性的自主行動,例如欺騙或自我復(fù)制等。OpenAI在發(fā)布GPT-4之前,首先授權(quán)ARC訪問該模型。ARC測試了該模型是否會在服務(wù)器上隱藏自己,或者向人類撒謊。測試結(jié)果沒有發(fā)現(xiàn)第一種行為,但確實發(fā)現(xiàn)了撒謊行為。ARC認(rèn)為目前的人工智能系統(tǒng)并不會像最激烈的“人工智能末日論者”所擔(dān)心的那樣,威脅人類生存,這能夠讓我們睡得更加安穩(wěn)。但這種狀況或許不會持續(xù)太久。

Anthropic公司

誰可以與OpenAI無處不在的聊天機器人ChatGPT相匹敵?一個由OpenAI的前研究人員組成的團隊希望答案是Anthropic。包括達(dá)里奧與丹妮拉·阿莫迪兄妹在內(nèi)的OpenAI的前研究主管,于2021年創(chuàng)立了Anthropic,旨在創(chuàng)建最安全的人工智能系統(tǒng)——這些系統(tǒng)不會像一些聊天機器人(包括ChatGPT)那樣,散播錯誤信息或危害性回應(yīng)。Anthropic在2023年年初發(fā)布了聊天機器人Claude,它與同行相比有一些顯著的不同之處:該公司聲稱這款聊天機器人“不太可能產(chǎn)生危害性輸出”,并描述其目標(biāo)是做到有用、無害和誠實。該初創(chuàng)公司最近還把Claude能夠處理的單次查詢中的單詞數(shù)量擴展到75,000個,相當(dāng)于許多小說的長度。該公司表示,這讓Claude可以準(zhǔn)確地分析財務(wù)報表或法律合同等技術(shù)類文件。(為了對抗Anthropic的優(yōu)勢,OpenAI最近也擴大了ChatGPT能夠處理的單詞數(shù)量。)市場推廣負(fù)責(zé)人桑迪·班納吉對《財富》雜志表示,從Y Combinator的初創(chuàng)公司到Zoom這樣的大型上市公司,Anthropic有“成千上萬的”客戶在使用Claude。該公司最近從亞馬遜(Amazon)獲得40億美元的巨額融資,而且有媒體稱,該公司正在與谷歌談判,計劃再從谷歌融資20億美元。除此之外,該公司之前已經(jīng)從谷歌和Menlo Ventures、Salesforce Ventures等投資者融資5.5億美元。

Anyscale公司

OpenAI、Instacart、Netflix、Cohere和Uber有什么共同之處?據(jù)四年前創(chuàng)立的初創(chuàng)公司Anyscale表示,它們都使用了由該公司開發(fā)的開源軟件基礎(chǔ)設(shè)施架構(gòu)Ray。Ray可以幫助人工智能的開發(fā)人員擴展其網(wǎng)絡(luò)。近年來,創(chuàng)建和運行人工智能模型需要的計算日益增多,這意味著在服務(wù)器群集之間分配訓(xùn)練、調(diào)整和運行大規(guī)模人工智能系統(tǒng)所需的計算負(fù)載,可能耗時費力。Anyscale的首席執(zhí)行官及聯(lián)合創(chuàng)始人羅伯特·西原告訴《財富》雜志:“從事人工智能研究的人,要花費50%的時間來設(shè)置設(shè)備集群和配置資源,這種情況非常普遍。”他們表示,Ray的作用是處理基礎(chǔ)設(shè)施方面的問題,能夠把訓(xùn)練和部署人工智能模型所需的時間縮短到幾分鐘。Ray最初是由加州大學(xué)伯克利分校(UC Berkeley)RISELab的研究人員開發(fā)的開源項目,后來成為Anyscale的主要產(chǎn)品。該公司現(xiàn)在獲得了安德森·霍洛威茨(Andreessen Horowitz)、恩頤投資(NEA)、Addition和英特爾投資公司(Intel Capital)等頂級硅谷投資者的投資。西原表示,過去六個月以來,人們對構(gòu)建人工智能系統(tǒng)的興趣飆升,對Ray的需求也隨之增加。他說他們注意到一個重要趨勢:越來越多的沒有機器學(xué)習(xí)專業(yè)知識的普通開發(fā)人員希望開發(fā)人工智能應(yīng)用。他表示對Anyscale而言,這意味著“這個市場的規(guī)模更加龐大,不止局限于機器學(xué)習(xí)專家”。目前,Ray是一個免費使用的開源平臺,西原估計有上萬家公司正在使用Ray。至于西原本人,在談到最近幾個月的日常生活時,他說:“我們現(xiàn)在變得更加忙碌。”

百度

截至2023年11月,“中國版谷歌”百度在紐約證券交易所(New York Stock Exchange)的市值約為380億美元。百度以中文優(yōu)化的搜索引擎而聞名,同時它還涉足一系列其他技術(shù)領(lǐng)域,尤其是人工智能。百度已經(jīng)訓(xùn)練出一個名為文心一言的聊天機器人,與ChatGPT競爭,文心一言的英文名稱來自《芝麻街》(Sesame Street)上著名的木偶角色。(在人工智能開發(fā)人員的內(nèi)部玩笑中,許多模型都借用了木偶角色的名字。)2023年10月,百度發(fā)布了文心一言4.0,并聲稱該模型處理許多中文特定任務(wù)的表現(xiàn)優(yōu)于OpenAI的聊天機器人,并且在復(fù)雜度和功能方面可以與ChatGPT相媲美。此外,百度除了在其搜索引擎、云計算部門和其他產(chǎn)品中使用機器學(xué)習(xí)外,還在開發(fā)自動駕駛算法,并擁有一支無人駕駛的“機器人出租車”車隊,它們在北京和其他三個中國城市車水馬龍的街道上行駛。

彭博社(Bloomberg)

金融資訊巨頭彭博社(Bloomberg)在今年3月出于研究的目的,發(fā)布了BloombergGPT。該模型有7億個數(shù)據(jù)單位,但目前用于訓(xùn)練模型的數(shù)據(jù)單位只有6,000億。據(jù)彭博社表示,BloombergGPT執(zhí)行金融特定任務(wù)和一般語言理解任務(wù)的表現(xiàn),優(yōu)于類似的人工智能工具。訓(xùn)練模型的數(shù)據(jù)有一半以上來自專有信息,因此BloombergGPT能夠為公司未來如何使用人工智能提供一個模板。彭博社使用自然語言處理,幫助其金融數(shù)據(jù)的用戶和媒體尋找必要信息,獲得交易見解,例如市場情緒分析等,該公司在這方面已經(jīng)遙遙領(lǐng)先。彭博社還率先使用人工智能撰寫頭條新聞和公司業(yè)績報道。

C3.ai公司

現(xiàn)在,人工智能成為熱門話題。但C3 AI早在十多年前就開始開發(fā)這個市場。今年3月,C3 AI發(fā)布了C3 Generative AI,成為最早提供可以在企業(yè)內(nèi)部信息系統(tǒng)中運行的生成式人工智能解決方案的公司之一。目前,喬治亞太平洋公司(Georgia-Pacific)、Flint Hills Resources公司、紐柯鋼鐵(Nucor)、Pantaleon、聯(lián)合愛迪生(Con Edison)以及美國國防部(U.S. Department of Defense)下屬的美國空軍(U.S. Air Force)和導(dǎo)彈防御局(Missile Defense Agency)等部門,都采用了C3 Generative AI項目。該公司表示,導(dǎo)彈防御署使用這項技術(shù),能夠?qū)w行測試分析和報告時間從一兩個月縮短到一周。總部位于美國加州雷德伍德城的C3 AI,由億萬富翁、企業(yè)軟件專家湯姆·西貝爾運營。從廣義上來說,該公司為制造業(yè)、金融服務(wù)和石油天然氣等行業(yè)提供人工智能工具。該公司參與了歐洲公用事業(yè)公司意大利國家電力公司(Enel)、杜克能源(Duke Energy)和殼牌(Shell plc.)等公司的多個大規(guī)模能源優(yōu)化和預(yù)防性維護項目。該公司成立于2009年,并于2020年12月上市。C3 AI在2023財年總營收2.668億美元,較2022財年增長了5.6%。

Cerebras公司

Cerebras的聯(lián)合創(chuàng)始人及首席執(zhí)行官安德魯·費爾德曼表示,該公司的旗艦計算機芯片有“餐盤”那么大。他聲稱這是史上最大的芯片。這款大型芯片旨在使運行當(dāng)今的大型人工智能模型變得更容易,無需擔(dān)心在多個圖形處理單元(GPU)分配負(fù)荷。自2016年成立以來,Cerebras的業(yè)務(wù)不再局限于芯片制造,而是開發(fā)了自己的定制服務(wù)器,并且目前正在開發(fā)自己的開源人工智能模型和數(shù)據(jù)集,希望在人工智能領(lǐng)域取得成功。在這個過程中,截至2021年11月的上一輪融資,該公司從私人投資者獲得了約7.2億美元投資,估值超過40億美元。將近兩年后的2023年7月,公司推出了由九臺“超級計算機”組成的網(wǎng)絡(luò)Condor Galaxy,這些計算機由餐盤大小的計算機芯片驅(qū)動,其客戶包括新冠疫苗的開發(fā)商阿斯利康(AstraZeneca)和匹茲堡超級計算中心(Pittsburgh Supercomputer Center)。雖然Cerebras經(jīng)常宣傳其芯片和數(shù)據(jù)中心的規(guī)模,但首席執(zhí)行官費爾德曼表示,他的公司并沒有停止增長:“我們正在開發(fā)更大、更快的超級計算機,以幫助客戶更快地完成工作任務(wù)。”

Character. AI公司

如果你可以跟埃隆·馬斯克對話會怎么樣?或者與《哈利·波特》(Harry Potter)里的德拉科·馬爾福對話會怎樣?Character.AI讓用戶能夠與億萬富翁、名人以及歷史人物和虛構(gòu)角色聊天。這款在線生成式人工智能聊天機器人利用深度學(xué)習(xí)算法和大型語言模型,以模仿角色在真實生活中的口吻,與用戶進行對話。2021年,谷歌的前工程師諾姆·薩澤爾和丹尼爾·德·弗雷塔斯共同創(chuàng)立了Character.AI,兩人分別擔(dān)任這家初創(chuàng)公司的首席執(zhí)行官和總裁。今年年初,該公司在A輪融資中融得1.5億美元,估值為10億美元,此輪融資由安德森·霍洛維茨領(lǐng)投。據(jù)路透社(Reuters)報道,該初創(chuàng)公司正在洽談以50億美元估值進行風(fēng)險融資的事宜,融資的對象包括公司高管的前雇主谷歌。Character.AI可以免費使用,但用戶能夠通過每月支付9美元的訂閱費,來跳過虛擬隊列,直接與角色對話。該公司稱在聊天機器人發(fā)布后的前六個月,其網(wǎng)站的月訪問量達(dá)到1億次。

Cohere公司

雖然相比OpenAI和Anthropic等競爭對手,Cohere的知名度不高,但作為由谷歌大腦(Google Brain)的團隊成員創(chuàng)建的人工智能模型開發(fā)商,Cohere致力于成為服務(wù)企業(yè)的人工智能平臺。企業(yè)可以使用Cohere開發(fā)的大語言模型,將人工智能融入文案寫作、搜索、文本和網(wǎng)頁總結(jié)等功能。該公司已經(jīng)成立了四年,其產(chǎn)品受到了Spotify、甲骨文(Oracle)和Jasper等公司的青睞。但把敏感數(shù)據(jù)輸入到大語言模型,引發(fā)了對隱私問題的廣泛擔(dān)憂。Cohere表示,為了防止公司的專有數(shù)據(jù)落入不當(dāng)之人的手中,它直接向企業(yè)提供服務(wù),無論是使用企業(yè)現(xiàn)有的云服務(wù)提供商還是在現(xiàn)場為企業(yè)提供服務(wù),從而使企業(yè)能夠控制自己的數(shù)據(jù)。今年6月,Cohere宣布在C輪融資中融得2.7億美元,投資者包括Index Ventures,以及英偉達(dá)(Nvidia)、甲骨文和賽富時等科技、軟件和芯片巨頭。今年年初,該公司還推出了其企業(yè)人工智能助理Coral。Cohere聯(lián)合創(chuàng)始人及首席執(zhí)行官艾丹·戈麥斯在一份文件里對《財富》雜志表示:“我們的模型要保持領(lǐng)先,這是一個巨大的挑戰(zhàn)。”但是,“這正是從事這個領(lǐng)域的工作激動人心的時刻。”

Conjecture公司

Conjecture的聯(lián)合創(chuàng)始人及首席執(zhí)行官康納·利希,擔(dān)心人工智能會對人類構(gòu)成生存威脅,因此他主張嚴(yán)格限制開發(fā)更強大的“前沿”人工智能模型,他已經(jīng)成為這方面的意見領(lǐng)袖之一。但與此同時,總部位于英國倫敦的Conjecture正在竭盡全力研究如何控制大型人工智能模型,并為自己開發(fā)功能強大的人工智能系統(tǒng)。Conjecture成立于2022年3月,相對而言,它是人工智能競賽的新人。該公司獲得了一批投資者的支持,包括Github的前首席執(zhí)行官奈特·弗里德曼和特斯拉(Tesla)的前人工智能高級總監(jiān)丹尼爾·格羅斯。除利希以外,該公司的其他創(chuàng)始人包括希德·布蘭科和加布里埃爾·阿爾福。他們擁有豐富的背景——利希曾經(jīng)反向工程了GPT-2,并與布萊克合作創(chuàng)建了人工智能研究實驗室EleutherAI,而阿爾福創(chuàng)建了兩家區(qū)塊鏈初創(chuàng)公司。Conjecture認(rèn)為,現(xiàn)有的大語言模型是一個黑匣子,人類除了提供數(shù)據(jù)之外幾乎無法控制,該公司希望提供一種替代選擇,讓系統(tǒng)變得可以解釋、有邊界和可靠。迄今為止,這家人工智能公司已經(jīng)融資2,500萬美元。

Databricks公司

總部位于美國舊金山的企業(yè)軟件公司Databricks成立已經(jīng)有十年之久,但現(xiàn)在它把人工智能作為核心業(yè)務(wù)。該公司創(chuàng)建了自己的低成本生成式人工智能聊天機器人——Dolly——開發(fā)成本只有30美元。Dolly 2.0是一個開源模型,這意味著任何組織都能夠把該公司創(chuàng)建聊天機器人所使用的訓(xùn)練集和數(shù)據(jù),進行商業(yè)應(yīng)用。該公司希望可以啟發(fā)其他人開發(fā)自己的生成式人工智能技術(shù)。Dolly在準(zhǔn)確度或功能廣度方面不及ChatGPT。但它的目的是證明,一家公司不需要耗費巨資,也不必?fù)碛泻A繑?shù)據(jù),就能夠開發(fā)出一款基本的、沒有花哨功能的聊天機器人。2023年5月,該公司對其9,000多名客戶進行了調(diào)查,了解他們?nèi)绾问褂萌斯ぶ悄堋U{(diào)查發(fā)現(xiàn),該公司的數(shù)據(jù)和人工智能平臺Databricks Lakehouse的需求持續(xù)增加。一個月后,它以13億美元的價格收購了創(chuàng)新平臺MosaicML。該平臺支持用戶創(chuàng)建自己的生成式人工智能模型。Databricks還在今年9月的I輪風(fēng)險資本融資中,額外獲得5億美元資金,英偉達(dá)成為其新戰(zhàn)略投資者。

Eleuther AI公司

2020年5月,OpenAI發(fā)布了一份研究報告,詳細(xì)分析了為什么人工智能語言模型規(guī)模越大,能力越強。EleutherAI的執(zhí)行董事斯特拉·彼得曼說:“據(jù)我們了解,唯一的限制是你愿意投入多少資金。”與此同時,OpenAI只允許經(jīng)過批準(zhǔn)的研究人員使用ChatGPT-3。有些人對此感到沮喪,于是在一個Discord服務(wù)器上,他們組成了一個團體,試圖復(fù)制OpenAI的成就,這個團體最終命名為EleutherAI。彼得曼表示:“社會有與技術(shù)互動的機制,但如果技術(shù)被封鎖,這些機制就很難實施。”這個團隊的成員來自計算機科學(xué)、哲學(xué)和英語等諸多領(lǐng)域。很快他們就發(fā)布了一系列大語言模型。2022年年初,EleutherAI推出了GPT-NeoX-20B,這是當(dāng)時公開發(fā)布的最大的大語言模型。之后,這個研究團體開始把重心從建立大型開源模型,轉(zhuǎn)向其他人工智能研究領(lǐng)域,包括深入研究人工智能的局限性和風(fēng)險。彼得曼在談到EleutherAI的影響時稱:“如今,有意提供開源模型的公司越來越多。”

Eleven Labs公司

ElevenLabs的聯(lián)合創(chuàng)始人馬蒂·斯塔尼舍夫斯基說:“假設(shè)有這樣一部電影,在所有的場景和對白中,都有一個聲音在用波蘭語講述著內(nèi)容。可以想象,這是一種非常糟糕的體驗。”斯塔尼舍夫斯基和他最好的朋友、另外一位聯(lián)合創(chuàng)始人皮奧特·達(dá)布科夫斯基就經(jīng)歷了這個問題。2023年1月,他們結(jié)合在Palantir和谷歌積累的機器學(xué)習(xí)經(jīng)驗,推出了人工智能驅(qū)動語音軟件,能夠?qū)⑽谋巨D(zhuǎn)換為語音。用戶可以設(shè)計自己的人工智能語音,但真正引起人們注意的是,他們的軟件在從短音頻樣本中克隆人聲方面表現(xiàn)非常出色。雖然ElevenLabs的條款和條件規(guī)定,人們必須獲得許可才能夠復(fù)制他人的聲音,但還是有人使用該軟件創(chuàng)建了未經(jīng)授權(quán)的名人深度偽造音頻,比如讓本·夏皮羅和艾瑪·沃特森等名人說出冒犯性言論,而且人們相信可能有犯罪分子利用這款軟件幫助實施一系列詐騙,之后該軟件引起了關(guān)注。斯塔尼舍夫斯基表示:“我們絕不支持這種行為,我們將采取行動。”他還指出,平臺上的所有音頻文件都是可以追溯的。公司采取了其他安全措施,以驗證用戶身份,并確保他們克隆的是自己的聲音。ElevenLabs堅稱,其軟件真正的殺手級應(yīng)用是,幫助創(chuàng)作者、企業(yè)和有聲讀物出版商擴大內(nèi)容的地理覆蓋范圍,使其能夠把口語翻譯成20多種語言,而且保證原始音色不會失真。該公司稱已經(jīng)有數(shù)十萬付費注冊用戶,但拒絕提供營收數(shù)據(jù)。2023年6月,該公司通過A輪融資融得1,900萬美元,此輪融資由GitHub的前首席執(zhí)行官奈特·弗里德曼、丹尼爾·格羅斯和安德森·霍洛威茨領(lǐng)投。

EvenUp公司

律師的工作枯燥乏味,處理各種文書工作可能會耗費幾個小時。對于專門從事人身損害賠償?shù)穆蓭煟词箍蛻艨梢缘玫劫r償,可能也需要等待幾個月的時間。成立四年的初創(chuàng)公司EvenUp,致力于縮短這個時間,并為客戶爭取到更高的賠償金。這家備受矚目的初創(chuàng)企業(yè)已經(jīng)引起了硅谷頂級投資者和人工智能思潮的關(guān)注。據(jù)報道,經(jīng)過數(shù)輪競爭激烈的融資,EvenUp從柏尚投資(Bessemer Venture Partners)和貝恩資本風(fēng)險投資公司(Bain Capital Ventures)等風(fēng)險投資公司融資近6,500萬美元(有報道稱EvenUp之后進行了更高金額的融資)。EvenUp的首席執(zhí)行官拉米·卡拉比巴爾在6月對路透社表示,客戶通過該平臺獲得的賠付金額增加了30%,而且還節(jié)省了時間。卡拉比巴爾估計,有300,000人身傷害律師能夠使用其產(chǎn)品,但到目前為止,這家初創(chuàng)公司約有500名客戶,僅占一小部分。EvenUp用戶需要支付一筆年度訂閱費,金額從數(shù)千美元到數(shù)十萬美元不等。卡拉比巴爾告訴路透社,該公司2023年的經(jīng)常性收入超過1,000萬美元。雖然其他初創(chuàng)公司也在進軍律師人工智能領(lǐng)域,但投資者認(rèn)為EvenUp專注于一個特定的小眾市場。EvenUp的投資方、貝恩資本風(fēng)險投資公司的合伙人薩拉·辛克福斯告訴《財富》雜志:“他們沒有試圖在廣闊的法律服務(wù)領(lǐng)域中做到面面俱到,而是高度專注于為他們的客戶創(chuàng)造巨大的價值。”

Exscientia公司

迄今為止,沒有一種通過人工智能引導(dǎo)的過程發(fā)現(xiàn)的藥物可以通過二期人體臨床試驗。Exscientia是正在努力改變這一狀況的公司之一。該公司成立于2012年,總部位于英國牛津,其在人工智能幫助下發(fā)現(xiàn)的六種藥物已經(jīng)進入了臨床試驗階段。(一家日本制藥公司現(xiàn)在擁有其中三種藥物的專有權(quán)。)它目前的產(chǎn)品組合包含各類藥物,既有抗癌藥物,也有抗炎分子。該公司籌集了大量現(xiàn)金,并于2021年10月以近30億美元的估值上市。(截至2023年10月,其市值約為6.8億美元。)Exscientia的創(chuàng)始人及首席執(zhí)行官安德魯·霍普金斯是制藥行業(yè)的資深人士。他表示,與傳統(tǒng)公司相比,他的人工智能驅(qū)動的藥物發(fā)現(xiàn)過程顯著縮短了尋找有前途的分子所需的時間。他說:“我們的化學(xué)專家能夠使用生成式人工智能,為他們的設(shè)計決策真正提供幫助,這確實大幅縮短了時間。”

谷歌DeepMind(Google DeepMind)

大型科技公司對人工智能近期的創(chuàng)新垂涎依舊,但谷歌一直是人工智能領(lǐng)域的先驅(qū)。谷歌研究部門(Google Research)和谷歌在2014年收購的DeepMind帶來了過去十年最重要的人工智能突破,其中包括:第一個擊敗人類專業(yè)圍棋手的計算機程序AlphaGo、可以預(yù)測蛋白質(zhì)結(jié)構(gòu)的人工智能系統(tǒng)AlphaFold,以及生成式人工智能聊天機器人Sparrow。DeepMind最近與谷歌的另外一個人工智能研究部門合并成谷歌DeepMind。2017年,谷歌研究部門發(fā)明了神經(jīng)網(wǎng)絡(luò)設(shè)計Transformer,這成為目前大多數(shù)生成式人工智能產(chǎn)品的基礎(chǔ)技術(shù)。谷歌還致力于將人工智能融入其所有產(chǎn)品,包括其Workspace辦公生產(chǎn)力軟件。為了與OpenAI的ChatGPT和微軟OpenAI驅(qū)動的必應(yīng)(Bing)競爭,谷歌推出了基于強大的PaLM 2大語言模型的聊天機器人Bard。它還準(zhǔn)備推出一個名為Gemini的下一代人工智能模型,它暗示任何競爭對手即使目前尚未發(fā)布的任何人工智能模型,都難以與這個模型的能力匹敵。有人認(rèn)為,該公司很可能正在努力構(gòu)建人工智能系統(tǒng),作為用戶在互聯(lián)網(wǎng)上的助理,幫助用戶處理從預(yù)訂航班和餐廳,到在線購買食品雜貨等各種任務(wù)。谷歌還一直努力利用其在生成式人工智能領(lǐng)域的能力,吸引更多大企業(yè)客戶使用其谷歌云平臺(Google Cloud Platform)。一些行業(yè)觀察者認(rèn)為,谷歌的海量數(shù)據(jù)和深厚的人工智能實力將有利于其取得優(yōu)勢,使其能夠抵御來自微軟和OpenAI的任何重大挑戰(zhàn)。此外,這家大型科技巨頭不止是關(guān)注自己的人工智能項目:據(jù)報道,谷歌在人工智能模型開發(fā)商Anthropic投資了3億美元,后者也登上了《財富》雜志的榜單。不過,無法回避的事實是,許多生成式人工智能的用例對谷歌的商業(yè)模式構(gòu)成了長期挑戰(zhàn)。谷歌的商業(yè)模式主要基于廣告,而不是軟件即服務(wù)的訂閱模式。當(dāng)用戶不再在互聯(lián)網(wǎng)上搜索,而是依賴人工智能助手呈現(xiàn)它們?yōu)槲覀冋业降男畔r,軟件即服務(wù)的訂閱模式似乎更合適。你無法像現(xiàn)實世界一樣,利用人工智能吸引的用戶變現(xiàn)。

Hippocratic AI公司

在Hippocratic AI的聯(lián)合創(chuàng)始人及首席執(zhí)行官蒙加爾·沙哈設(shè)想的世界里,護士的數(shù)量將是今天的十倍。他們會用你首選的語言,給你打電話解讀實驗室檢測結(jié)果,幫助管理慢性病護理,并解答你的問題。只是這些護士將是在醫(yī)療護理特定大語言模型上訓(xùn)練的人工智能護士。它們提供這種護理服務(wù)的成本只有每小時5美分。該初創(chuàng)公司的創(chuàng)始團隊中包括醫(yī)生、一家大型醫(yī)院的前首席運營官和谷歌的醫(yī)療大語言模型Med-PaLM的一位創(chuàng)作者。

Hippocratic AI成立于2023年5月,在由General Catalyst和安德森·霍洛威茨領(lǐng)投的種子輪融資中,融得5,000萬美元。沙哈表示,產(chǎn)品必須達(dá)到準(zhǔn)確性基準(zhǔn),并且有必要的安全措施之后,才會上市。到那時,它將與醫(yī)療系統(tǒng)合作推廣其產(chǎn)品。

Hugging Face公司

在開源人工智能模型領(lǐng)域,Hugging Face的規(guī)模最大,它已經(jīng)成為人工智能開發(fā)者尋找模型和工具的必然選擇。開發(fā)者可以利用這些模型和工具,輕松創(chuàng)建人工智能驅(qū)動的產(chǎn)品,無需向OpenAI、Anthropic或谷歌支付高額費用。該公司于2016年由三名創(chuàng)業(yè)者創(chuàng)立,最初的業(yè)務(wù)是為iPhone開發(fā)一款有趣的聊天機器人(公司的名稱靈感來自所謂的“擁抱臉”表情包)。但來自人工智能社區(qū)的熱情,讓這家公司改變了重心,成為一個幫助人工智能開發(fā)者尋找模型、數(shù)據(jù)集和工具的平臺。如果有人希望發(fā)布一款開源人工智能模型或數(shù)據(jù)集,它也是首選的分銷平臺,類似于GitHhub與傳統(tǒng)代碼的關(guān)系一樣。Hugging Face自己也開發(fā)了多個開源人工智能模型,其中知名度最高的是BLOOM大語言模型。公司的開源策略毫無疑問帶來了回報:Hugging Face在由Salesforce Ventures領(lǐng)投的D輪融資中融得2.35億美元,在2023年8月的估值達(dá)到了45億美元。

IBM公司

總部位于美國紐約阿蒙克的IBM,早在20多年前就推出了Watson,開始研究人工智能技術(shù),當(dāng)時這項技術(shù)的能力令全世界為之著迷。2023年,該公司推出了其生成式人工智能產(chǎn)品Watsonx,并堅信這項技術(shù)將帶來生產(chǎn)力的爆發(fā)。IBM的首席執(zhí)行官阿爾溫德·克里希納預(yù)計,在未來五年內(nèi),公司目前近三分之一的崗位能夠由人工智能和自動化取代,從而讓人類可以從事高價值的工作。克里希納表示,提高生產(chǎn)力的好處可能意味著再投資和更大的利潤空間。IBM的Watsonx已經(jīng)吸引了美國國家航空航天局(NASA)和Wix等客戶。該公司還為客戶提供人工智能,幫助客戶實現(xiàn)自動化、現(xiàn)代化和提供客戶服務(wù)。例如,巴西布拉德斯科銀行(Bradesco)使用Watson助手自動解答客戶服務(wù)問題,每月回答283,000個問題。IBM專注于在能夠擴展的相關(guān)領(lǐng)域擴大其人工智能的應(yīng)用,并加強其在傳統(tǒng)IT業(yè)務(wù)之外的地位;它承諾未來三年為200萬人進行人工智能培訓(xùn)。該公司以46億美元收購了軟件公司Apptio,來增強其人工智能業(yè)務(wù)和紅帽(Red Hat)云業(yè)務(wù)。

Inflection公司

這家初創(chuàng)公司成立的時間不久,可能有許多人并不了解它,但這家公司不容小覷。它擁有一支實力強大的創(chuàng)始團隊,包括谷歌DeepMind的聯(lián)合創(chuàng)始人穆斯塔法·薩利曼、DeepMind前首席科學(xué)家凱倫·西蒙尼楊以及LinkedIn的聯(lián)合創(chuàng)始人和風(fēng)險投資家里德·霍夫曼。Inflection已經(jīng)通過微軟和英偉達(dá)等投資者融資超過15億美元。該公司發(fā)布了一款基于會話的生成式人工智能聊天機器人Pi,它被設(shè)計城一款可以提供情感支持的對話者,并且能夠整合到iMessage和其他通信平臺。在發(fā)布這款聊天機器人時,薩利曼稱:“Pi是一種新型人工智能,它不僅聰明,而且有很高的情商。我們將Pi看作是一個數(shù)字伴侶,無論你想學(xué)習(xí)新東西,還是需要向一個發(fā)泄對象聊聊你一天的經(jīng)歷,或者只是需要一個好奇而友善的對手來打發(fā)時間,它都會始終陪伴著你。”然而,Pi值得關(guān)注的是它所使用的Inflection的Inflection-1大語言模型,這個模型在某些任務(wù)上可以與OpenAI和Anthropic的模型相媲美。而且薩利曼一直暗示,他認(rèn)為公司的未來不只是開發(fā)一款高情商的聊天機器人,而是一個人工智能驅(qū)動的個人“參謀長”,它將幫助用戶安排工作和個人生活,并代表他們執(zhí)行無數(shù)任務(wù)。7月,該公司與亞馬遜、微軟、OpenAI、Meta和其他人工智能實驗室共同前往白宮,承諾執(zhí)行安全的人工智能措施。

財捷集團(Intuit)

在開發(fā)有用的人工智能系統(tǒng)時,數(shù)據(jù)至關(guān)重要。財務(wù)軟件巨頭、曾經(jīng)開發(fā)出TurboTax、QuickBooks、Credit Karma和Mailchimp的財捷集團,擁有大量數(shù)據(jù)。今年早些時候,該公司發(fā)布了生成式人工智能開發(fā)的專有操作系統(tǒng)GenOS,該系統(tǒng)能夠配合最先進的第三方大語言模型以及財捷集團自己定制訓(xùn)練的財務(wù)大語言模型使用,通過微調(diào)可以解決稅務(wù)、會計、現(xiàn)金流、個人財務(wù)和市場營銷等方面的挑戰(zhàn)。該公司與超過24,000家金融機構(gòu)合作,它們每天生成650億條機器學(xué)習(xí)預(yù)測。財捷集團的首席執(zhí)行官薩桑·古達(dá)茲在《財富》雜志去年舉辦的一次會議上表示:“我們沒有一個專門負(fù)責(zé)人工智能研發(fā)的團隊。人工智能是我們一切設(shè)計的核心。”該公司繼續(xù)把人工智能融入其TurboTax Live和QuickBooks Live產(chǎn)品中由人類金融專家提供的服務(wù),并在9月發(fā)布了Intuit Assist,這是該公司的生成式人工智能驅(qū)動財務(wù)助理,能夠在財捷的所有產(chǎn)品上工作。

Jasper AI公司

Jasper AI第一次收獲風(fēng)投公司IVP關(guān)注,是因為該公司內(nèi)部投資工具將Jasper的網(wǎng)站標(biāo)記為前1%潛在投資對象。“Jasper是我聽過唯一一個其他人當(dāng)成真人的軟件。”IVP投資Jasper的負(fù)責(zé)人卡提克·拉馬克里希南表示。“人們會說:‘他幫助我寫了一篇博客。’或者‘他幫助我更迅速地開展活動。’”

Jasper由前營銷人員和最好的朋友戴夫·羅根莫瑟、摩根大通(J.P. Morgan)和克里斯·霍爾創(chuàng)建,主要為了幫助其他營銷人員做廣告,付費客戶達(dá)10萬,其中不乏極為忠誠的粉絲。用戶使用該平臺可以撰寫文案、創(chuàng)建圖像,甚至選擇不同的品牌聲音。羅根莫瑟說,當(dāng)前挑戰(zhàn)是簡化各項功能,方便用戶選擇。剛開始Jasper基于OpenAI的技術(shù)構(gòu)建,如今已經(jīng)開始構(gòu)建自己的模型,因為該公司希望為企業(yè)客戶提供更多的定制產(chǎn)品。

盡管公司很年輕,成立于2021年年初,但Jasper在融資方面極其順利,a輪融資從Bessemer Venture Partners和HubSpot Ventures等風(fēng)投募集1.25億美元,而且以15億美元估值躋身獨角獸之列。羅根莫瑟表示,由于融資順利,Jasper員工在過去一年半里從9人增加到200多人。

LAION組織

克里斯托夫·舒曼住在德國漢堡,是一位謙遜的高中教師。他同時也是人工智能領(lǐng)域最具影響力非營利組織之一的聯(lián)合創(chuàng)始人。2021年,舒曼和其他幾位兼職人工智能研究人員成立了LAION,簡稱“大規(guī)模人工智能開放網(wǎng)絡(luò)”。在OpenAI和谷歌等科技巨頭把持的人工智能領(lǐng)域,他們的非營利機構(gòu)希望實現(xiàn)開源,或者向他們之類研究人員免費提供。該團隊相當(dāng)成功。開發(fā)出流行的圖像生成器Stable Diffusion的Stability AI公司利用舒曼每天教授物理和計算機課之余管理的數(shù)十億對圖像轉(zhuǎn)文本數(shù)據(jù)集訓(xùn)練模型。舒曼表示,谷歌、Meta和微軟也使用LAION的數(shù)據(jù)訓(xùn)練人工智能算法。該非營利組織正在培訓(xùn)自己的開源模型。“我們不僅要努力實現(xiàn)數(shù)據(jù)民主化,也要努力實現(xiàn)模型和代碼民主化。”LAION的聯(lián)合創(chuàng)始人,住在德國慕尼黑的醫(yī)生羅伯特·卡茲馬克表示。不過LAION也面臨爭議。其數(shù)據(jù)包含成千上萬受版權(quán)保護的作品。根據(jù)歐盟的法律,LAION等非商業(yè)實體能夠使用受版權(quán)保護的材料從事數(shù)據(jù)挖掘。然而藝術(shù)家和版權(quán)所有者稱,LAION參與了“數(shù)據(jù)洗錢”,該組織向Stability和其他營利性伙伴出售或提供數(shù)據(jù)時,就已經(jīng)違反了歐盟數(shù)據(jù)挖掘方面法律的精神。

LangChain公司

Vanilla ChatGPT正如其名,確實有點普通(vanilla有缺乏創(chuàng)新,普普通通之意——譯注)。該工具生成各類風(fēng)格文字的能力令人印象深刻,然而到現(xiàn)在還未接入維基百科(Wikipedia),無法報告當(dāng)日天氣,也沒有最高法院最新判決的分析。不過,開發(fā)人員能夠?qū)⑼獠啃畔⒓虞d至聊天機器人,把質(zhì)量欠佳的回復(fù)內(nèi)容化腐朽為神奇。對于想實現(xiàn)流程自動化的新手來說,技術(shù)上可能有些困難,不過LangChain開發(fā)了相對方便使用的開源工具,可以充分使用大語言模型的強大功能。開發(fā)人員能夠?qū)⑻崾炬溄釉谝黄穑4嫣崾荆槿斯ぶ悄苣P吞峁┰L問外部數(shù)據(jù)庫的簡便方法。其中多項功能非常受歡迎,連OpenAI在新版本GPT工具中都有所借鑒。但是,尤其對于剛開始開發(fā)人工智能應(yīng)用的人,以及想使用OpenAI的GPT以外模型的人而言,LangChain確實為程序員提供了輕松構(gòu)建人工智能應(yīng)用的方法。Chase和Gola的開源項目吸引了大批開發(fā)者,風(fēng)投自然也不會錯過。LangChain由創(chuàng)始人哈里森·蔡斯和安庫什·戈拉于2022年10月創(chuàng)建,目前已經(jīng)從Benchmark和紅杉資本(Sequoia)募集至少3,000萬美元,上一輪LangChain的估值至少為2億美元。

Meta公司

比起OpenAI、微軟和谷歌,社交媒體巨頭Meta在生成式人工智能革命中可能不算亮眼,不過該公司旗下人工智能研究實驗室有一些全球頂尖的深度學(xué)習(xí)人才。而且從審核Facebook上的內(nèi)容到把廣告推薦與Instagram用戶匹配,該公司在大語言模型方面的開創(chuàng)性工作在自家產(chǎn)品上發(fā)揮了關(guān)鍵作用。現(xiàn)在,該公司在開源生成式人工智能世界中同樣角色關(guān)鍵,已經(jīng)免費發(fā)布開源語言模型LLaMA(大語言模型元人工智能),多項功能看齊OpenAI的ChatGPT和谷歌的Bard。五個月后,Meta與微軟聯(lián)合發(fā)布了開源的Llama 2,免費用于商業(yè)用途或研究。Meta的首席人工智能科學(xué)家楊立昆在人工智能研究領(lǐng)域非常優(yōu)秀,也是“人工智能教父”之一。他強烈反對嚴(yán)格的人工智能監(jiān)管,尤其是可能導(dǎo)致開放式人工智能發(fā)展困難的規(guī)則。他也帶頭反對人工智能可能對人類構(gòu)成生存風(fēng)險,也因此與深度學(xué)習(xí)領(lǐng)域里其他的教父杰夫里·辛頓和約舒亞·本吉奧的觀點對立。6月,Meta宣布推出多項服務(wù),其中生成式人工智能語音模型Voicebox使用最短兩秒的音頻樣本就可以生成高質(zhì)量的文本轉(zhuǎn)換語音。最近,Meta宣布了人工智能模型模擬器Habitat 3.0,希望將實體機器人訓(xùn)練成擅長社交的智能助理。公司還獲得了帕里斯·希爾頓到史努比·狗狗等知名人物的形象許可,推出了多款具有獨特風(fēng)格的人工智能聊天機器人。

微軟(Microsoft)

OpenAI研發(fā)出ChatGPT固然值得稱贊,但如果沒有當(dāng)初微軟數(shù)十億美元的投資,斷然不可能實現(xiàn)。據(jù)報道,到目前為止,微軟已經(jīng)向OpenAI投入130億美元,并建立了全球最大的超級計算集群之一,以幫助OpenAI訓(xùn)練規(guī)模更大、能力也更強大的人工智能模型。微軟的聊天機器人和搜索引擎Bing Chat根據(jù)OpenAI的模型構(gòu)建,首次亮相以來用戶使用該機器人已經(jīng)聊天超過10億次,能夠根據(jù)用戶提示轉(zhuǎn)化圖像的Bing Image Creator生成圖像超過10萬張。然而,必應(yīng)結(jié)合人工智能并未實現(xiàn)微軟搜索業(yè)務(wù)大翻身:必應(yīng)在全球搜索市場份額依舊停留在3%左右,谷歌的份額為91%。不過對微軟來說,生成式人工智能更重要的勝利在云業(yè)務(wù)方面。微軟向Azure云客戶提供OpenAI技術(shù),推動該科技巨頭銷售額和利潤增長超過華爾街預(yù)期,在截至今年9月的財季,生成式人工智能為云收入增長貢獻(xiàn)約為3%。從PowerPoint到Outlook,微軟在核心業(yè)務(wù)辦公軟件產(chǎn)品中均已經(jīng)添加人工智能輔助功能,還增加了人工智能編碼助理GitHub Copilot等產(chǎn)品。

Midjourney公司

教皇穿上時髦的白色羽絨服什么樣?美國前總統(tǒng)唐納德·特朗普被捕會是怎樣的場景?現(xiàn)在有了Midjourney,人們再也不必將想象停留在腦海——只用幾分鐘就可以呈現(xiàn)在眼前。這家位于美國舊金山的研究實驗室成立還不到兩年,正是過去一年某些瘋狂傳播的人工智能生成照片的幕后推手,也是同名廣受歡迎的文本圖像生成系統(tǒng)開發(fā)方。用戶提供文本提示,就能夠使用Midjourney創(chuàng)建高度逼真的圖像。不過該工具也是人工智能生成照片這一規(guī)則模糊新世界里的爭議中心,有人批評稱特朗普和其他名人以假亂真的圖片可能用于散布政治虛假信息,藝術(shù)家們強烈反對使用受版權(quán)保護的作品培訓(xùn)Midjourney,也有人擔(dān)心該工具會減少付費商業(yè)插圖和攝影作品數(shù)量,削減企業(yè)將向藝術(shù)家和攝影師支付的圖片費用。今年早些時候,Midjourney創(chuàng)作的一張照片獲得了重要的攝影獎,當(dāng)時多位攝影師十分憤怒。該實驗室還因為審核標(biāo)準(zhǔn)而受到抨擊,一些人批評其標(biāo)準(zhǔn)不一致。今年早些時候,創(chuàng)始人及首席執(zhí)行官大衛(wèi)·霍爾茨說:“我們正在聽取專家和社區(qū)的大量反饋和想法,努力多思考。”去年霍爾茨曾經(jīng)表示,該實驗室創(chuàng)立時間并不長,就已經(jīng)在文本轉(zhuǎn)換圖像領(lǐng)域取得了巨大進步,“目標(biāo)是讓人類更有想象力,而不是研發(fā)富有想象力的機器。”有趣的是,該實驗室一直未接受風(fēng)險投資。

英偉達(dá)(Nvidia)

英偉達(dá)成立于1993年,然而沒有哪家公司像英偉達(dá)一樣順利乘上人工智能的東風(fēng)。英偉達(dá)是人工智能硬件領(lǐng)域的霸主,其圖形處理單元(GPU)芯片對大多數(shù)頂級人工智能模型訓(xùn)練至關(guān)重要(搜索巨頭谷歌的模型除外;其數(shù)據(jù)中心大多使用自家芯片。)作為重要的人工智能公司,截至2023年11月2日,英偉達(dá)的股票在今年已經(jīng)驚人地飆升289%。英偉達(dá)旗下還有廣受歡迎且支持全面的CUDA軟件系統(tǒng),開發(fā)人員可以相對容易地對GPU編程。其芯片性能相當(dāng)強勁,市場份額迅速壯大,其他芯片制造商只能在后面費力追趕。雖然英偉達(dá)最知名的業(yè)務(wù)是芯片,但近20年來該公司一直投資人工智能軟件,僅過去十年就在研發(fā)上花費了300億美元。英偉達(dá)開始直接向企業(yè)客戶提供自己的人工智能模型和人工智能云服務(wù),導(dǎo)致與一些最大客戶,比如微軟Azure等“超大規(guī)模”云提供商展開正面競爭。英偉達(dá)針對人工智能和生物技術(shù)推出了兩項大語言模型云服務(wù),開發(fā)者能夠使用其大語言模型創(chuàng)建內(nèi)容。

OpenAI公司

2022年11月,OpenAI推出ChatGPT,震驚了世界。轉(zhuǎn)眼來到今年11月中旬,上周末瘋狂的董事會大戲中聯(lián)合創(chuàng)始人薩姆·奧爾特曼突然離職,再次震驚了商業(yè)和科技界。目前還不清楚OpenAI人事動蕩的最終結(jié)果。正如《財富》雜志報道,正因為OpenAI的公司架構(gòu)不同尋常,權(quán)力斗爭才有可能出現(xiàn)。OpenAI成立于2015年,當(dāng)初是非營利組織(后來增加了一個利潤有上限的部門),由埃隆·馬斯克(后來與公司決裂)和現(xiàn)任前首席執(zhí)行官奧爾特曼等科技企業(yè)家組成。OpenAI與人工智能其他公司類似,目標(biāo)是創(chuàng)建通用人工智能,即可以完成需要智力的任務(wù)的單獨人工智能,有些跟人類水平相當(dāng),有些能夠完成得更好。據(jù)報道,僅過兩個月,ChatGPT的月活用戶就達(dá)到1億,成為截至當(dāng)時增長最快的消費者應(yīng)用程序。OpenAI的最新版本GPT-4 Turbo是迄今功能最強大的通用大語言基礎(chǔ)模型,購買ChatGPT Plus服務(wù)的付費用戶和API企業(yè)客戶都可以訪問。從寫代碼到寫劇本,GPT-4 Turbo什么都會做,還能夠創(chuàng)建圖像,根據(jù)冰箱里食物的照片倒推食譜,還可以使用越來越多的互聯(lián)網(wǎng)連接工具。GPT-4另一版本加入了微軟的搜索引擎必應(yīng)。OpenAI宏大的愿景也順利募集到龐大規(guī)模的資金,其中僅微軟就提供了130億美元。不過該公司的創(chuàng)新也面臨審查,包括政府的審查、審查其技術(shù)的能力,以及該用哪些法規(guī)管理和控制。該公司還面臨很多侵犯版權(quán)和數(shù)據(jù)隱私泄露的訴訟。不管奧爾特曼和OpenAI團隊其他成員的最終結(jié)局如何,可以打賭全世界必會關(guān)注。

Palantir公司

這家規(guī)模龐大的數(shù)據(jù)挖掘和軟件公司成立于2003年,最大客戶包括多家政府、軍隊和情報機構(gòu),PayPal的彼得·蒂爾也是創(chuàng)始人之一。Palantir在人工智能領(lǐng)域深耕多年;去年,烏克蘭軍隊對抗俄羅斯的戰(zhàn)爭中就使用了其工具。最近人工智能大熱,對這家總部位于美國丹佛的公司技術(shù)需求也同步激增。2023年4月,Palantir推出了人工智能平臺,能夠使用人工智能分析各種現(xiàn)實場景中的數(shù)據(jù)。今年早些時候,首席執(zhí)行官及聯(lián)合創(chuàng)始人亞歷克斯·卡普表示,人工智能工具“市場無限”。由于對其平臺需求激增,2023年前六個月,Palantir的股價翻了一番。該公司對未來幾個月相當(dāng)樂觀,因為今年5月,公司預(yù)測每個季度都會盈利。盡管Palantir的人工智能工具功能強大,也有巨大潛力,但卡普堅持認(rèn)為技術(shù)將繼續(xù)“從屬于”創(chuàng)造者,并不會成為獨立的強大力量。與多家科技公司一樣,Palantir采取了一系列成本削減措施,包括裁員約2%,在云技術(shù)方面降低支出等。

PathAI公司

近幾十年來,現(xiàn)代醫(yī)學(xué)發(fā)展迅速,然而一些關(guān)鍵部分,例如醫(yī)生檢查細(xì)胞以診斷癌癥等疾病的病理學(xué)仍舊依賴人眼,而人眼有時會犯錯。這正是人工智能大顯身手之處。總部位于美國波士頓的PathAI利用機器學(xué)習(xí)和人工智能算法幫助病理學(xué)家和研究人員更準(zhǔn)確、更高效地分析細(xì)胞圖像,發(fā)現(xiàn)新的生物標(biāo)志物,協(xié)助診斷和未來的藥物開發(fā)。該公司根據(jù)450多名病理學(xué)家的專有眾包數(shù)據(jù)開發(fā)算法。PathAI稱,超過45家制藥和生物技術(shù)公司、3,500家供應(yīng)商和50個實驗室正在使用其技術(shù)。PathAI主要跟治療癌癥、肝病和腸道綜合征的醫(yī)生合作。首席執(zhí)行官安迪·貝克本人也是經(jīng)認(rèn)證的病理學(xué)家,他預(yù)測10年后病理學(xué)家“不會像現(xiàn)在一樣針對單個細(xì)胞計數(shù)或手動測量。所有低級別的工作都會提前完成,人工智能系統(tǒng)可以提供具體建議,‘診斷如下,推薦的護理方向如下。’”他對《財富》雜志表示。貝克還告訴《財富》雜志,PathAI的平臺已經(jīng)用于開發(fā)新藥,處于臨床試驗各個階段。General Atlantic和D1 Capital Partners等投資人也發(fā)現(xiàn)了PathAI技術(shù)的前景,為這家初創(chuàng)公司投入超過3.5億美元。最近,該公司宣布了Nash Explore和IBM Explore等新產(chǎn)品,主要利用人工智能對八種類型的癌癥和潰瘍性結(jié)腸炎標(biāo)志物實施分類。

Perplexity公司

Perplexity總部位于美國舊金山,正在基于人工智能聊天努力構(gòu)建堪與谷歌搜索和微軟必應(yīng)媲美的生成式搜索引擎。該公司創(chuàng)立于2022年,創(chuàng)始人包括阿拉溫德·斯里尼瓦斯、丹尼斯·雅拉特、約翰尼·何,以及安迪·康溫斯基,創(chuàng)始團隊成員曾經(jīng)在科技公司積累人工智能和基于機器學(xué)習(xí)的角色方面經(jīng)驗。該公司報告稱,僅在今年2月,其月訪問量就達(dá)到1,000萬,獨立訪客達(dá)到200萬人。該公司的界面更像是聊天屏幕,Perplexity聲稱其提供的答案準(zhǔn)確得多,而且比其他一些聊天機器人搜索引擎產(chǎn)生幻覺的概率更低。今年3月,Perplexity在蘋果(Apple)的iOS上推出平臺,六天內(nèi)下載量超過了10萬次。斯里尼瓦斯表示,“Perplexity”不同之處在于,能夠很好地平衡搜索結(jié)果排名和使用大語言模型生成總結(jié)的簡短答案,答案均引用來源,用戶也可以提出后續(xù)問題。該公司計劃提供付費功能,以實現(xiàn)盈利。Perplexity在需求很高的人工智能搜索領(lǐng)域面臨著諸多的競爭,不過該公司獨特之處在于已經(jīng)成功吸引圖靈獎(Turing Award)的得主楊立昆和谷歌人工智能研究負(fù)責(zé)人杰夫·迪恩等行業(yè)資深人士注意。到目前為止,該公司已經(jīng)融資超過2,800萬美元,正在與Instacart和Klarna就將對話搜索整合到各自旗下平臺展開談判。

Pinecone公司

人類并非無所不知,但人類能夠在教科書、在線數(shù)據(jù)庫和百科全書中搜索,找到幾乎無限量信息。同樣,當(dāng)用戶需要人工智能模型中并未收納的信息時,模型需要自行研究。這就是Pinecone和矢量數(shù)據(jù)庫發(fā)揮作用的地方。創(chuàng)始人及首席執(zhí)行官埃多·利伯緹表示,每個值得一試的人工智能應(yīng)用程序都有可以用來定位查詢信息的數(shù)據(jù)庫,比如蘋果股票的當(dāng)前價格或銀行客戶名冊上的非公開數(shù)據(jù)等。Pinecone為包括微軟和CVS等大小公司開發(fā)基礎(chǔ)設(shè)施,打造各自的矢量數(shù)據(jù)庫,為其人工智能模型提供所謂的“長期記憶”。利伯緹稱,2022年年初推出后運營第一年,Pinecone的客戶群從零增長到170,銷售額超過200萬美元。Crunchbase的數(shù)據(jù)顯示,2023年4月,該公司以7.5億美元估值募集了1億美元,這家總部位于美國舊金山的初創(chuàng)公司募集資金總額也達(dá)到1.38億美元。

Profluent公司

Profluent公司的首席執(zhí)行官阿里·馬達(dá)尼表示,尋找能夠治療疾病的化學(xué)分子無異于海底撈針。馬達(dá)尼稱,就像使用大型語言模型培訓(xùn)ChatGPT預(yù)測問題的正確答案一樣,有著類似設(shè)計的人工智能模型有望“學(xué)習(xí)自然的基礎(chǔ)語言,繼而解決人類健康和環(huán)境領(lǐng)域最具挑戰(zhàn)性的問題。”他與加州大學(xué)舊金山分校(UCSF)、斯坦福大學(xué)(Stanford University)和業(yè)內(nèi)的科學(xué)家一道,耗費了數(shù)年的時間研究這一問題,以測試人工智能設(shè)計的蛋白質(zhì)是否有用。他們發(fā)明的這項技術(shù)可以打造功能性蛋白質(zhì),《自然生物》(Nature Biotech)期刊上發(fā)表的一則同行評議論文對這類蛋白質(zhì)進行了詳細(xì)介紹。這些人工智能設(shè)計的蛋白能夠被用于醫(yī)藥發(fā)現(xiàn)以及其他生物科技部門。受此前景啟發(fā),馬達(dá)尼創(chuàng)建了Profluent,而且是單槍匹馬,其團隊成員由生物和機器學(xué)習(xí)領(lǐng)域的科學(xué)家、技術(shù)人員和企業(yè)家構(gòu)成。在2023年1月成立并獲得Insight Partners領(lǐng)投的900萬美元種子輪資金之后,該團隊的陣容有望繼續(xù)壯大。Insight Partners的董事總經(jīng)理迪蘭·莫里斯說:“即便蛋白質(zhì)結(jié)構(gòu)預(yù)測領(lǐng)域在人工智能的驅(qū)動下于近期出現(xiàn)了諸多突破,但Profluent的成就尤為卓著。”

Replika公司

Replika的創(chuàng)始人及首席執(zhí)行官尤金妮亞·庫伊達(dá)表示:“我們正面臨著最嚴(yán)重的孤獨危機。”此前從事記者工作的庫伊達(dá)希望借助Replika來對抗孤獨。Replika是其創(chuàng)建的人工智能伴侶公司,成立于2017年,為用戶提供了反烏托邦式(或烏托邦式,取決于個人看法)電影《Her》中的些許體驗。在這部電影里,演員杰昆·菲尼克斯愛上了其人工智能助理。Replika用戶可以打造其專屬的虛擬朋友,定制其外貌,并長時間地與其聊天。截至2023年10月,這款應(yīng)用程序的月用戶達(dá)到了約200萬,付費訂閱用戶達(dá)到了25萬。Crunchbase稱,公司從私人投資者手中籌集了近1,100萬美元。與OpenAI這類人工智能大拿相比,這點資金可謂是不足為道。然而,Replika對虛擬友誼的推銷引發(fā)了巨大的媒體轟動,尤其是有報道稱,其用戶傾向于將其人工智能朋友轉(zhuǎn)變?yōu)榛セ莼ダ娜斯ぶ悄芘笥选?023年2月,公司取消了用戶參與情色角色扮演的功能,但在社區(qū)的強烈呼吁下,公司又恢復(fù)了這一功能,并允許在2023年2月之前注冊的用戶繼續(xù)與其聊天機器人卿卿我我。Replika還推出了Blush這款應(yīng)用程序,專為希望與人工智能聊天機器人“約會”的用戶打造。庫伊達(dá)稱,線上戀愛一開始也被人們貼上不正經(jīng)的標(biāo)簽,但后來這種看法完全消失了,因此她認(rèn)為,人們對與人工智能機器人談戀愛的成見也會隨著時間的流逝而消失。

Runway公司

從過去到現(xiàn)在,制作一部電影是一個既耗時又耗資本的過程,對于一位剛?cè)胄械碾娪爸破率侄裕毩⒌爻晒ν瓿梢徊侩娪暗呐臄z是不可能的事情。然而,初創(chuàng)公司Runway的創(chuàng)始人將改變這一現(xiàn)狀。這家公司因為其幫助打造大熱文字轉(zhuǎn)圖像模型Stable Diffusion而聲名鵲起。它最近推出了首款面向公眾的文字轉(zhuǎn)視頻平臺Gen-2。公司當(dāng)前為制作公司、新聞刊物、獨立內(nèi)容創(chuàng)作者提供超過35款人工智能視頻編輯工具。Runway還允許電影拍攝者和藝術(shù)家等創(chuàng)意人士生成所有的畫面和場景。值得一提的是,多部電影的部分場景均采用了這項技術(shù)進行編輯,包括《瞬息全宇宙》(Everything Everywhere All at Once)。該公司的發(fā)言人稱,該產(chǎn)品的一些客戶包括紐百倫(New Balance)、哥倫比亞廣播公司(CBS)和Vox。2023年6月,Runway在C輪擴展融資中籌集了1.41億美元,估值達(dá)到了15億美元,參與投資的公司包括谷歌、英偉達(dá)和Salesforce Ventures。公司最近公布了新的研究,詳細(xì)介紹了在從文字生成圖像過程中減少其模型偏見的方式,同時發(fā)布了“導(dǎo)演模式”,給予用戶更多的場景生成控制權(quán)。

賽富時(Salesforce)

這家基于云的客戶關(guān)系管理平臺自2016年以來一直在通過其人工智能平臺Einstein使用人工智能技術(shù)。為了給客戶和雇員提供更多的服務(wù),賽富時宣布,公司將把2023年3月發(fā)布的Einstein GPT與ChatGPT制造商OpenAI進行整合。Einstein機器人的一些主要用戶包括一級方程式賽車(利用這項技術(shù)提供個性化的車迷體驗),以及古馳(Gucci,采用該技術(shù)處理面向客戶的業(yè)務(wù))。賽富時還經(jīng)營著一項專注于生成式人工智能的風(fēng)投資本業(yè)務(wù),公司借助這項業(yè)務(wù)計劃在該技術(shù)領(lǐng)域投資5億美元。在賽富時的人工智能擴張之旅中,數(shù)據(jù)安全一直是重中之重,只有這樣,大型語言模型才不會在不經(jīng)意間泄露客戶的數(shù)據(jù)。這家公司采取了“人機回圈”的做法,也就是生成式人工智能將參與預(yù)防人工智能的濫用,并防止可能會對客戶帶來不利影響的人工智能幻覺。2023年3月,此前賽富時服務(wù)云業(yè)務(wù)負(fù)責(zé)人史宗瑋被任命為人工智能業(yè)務(wù)執(zhí)掌者。公司期待通過人工智能來推動業(yè)務(wù)增長,并已經(jīng)引入了一整套工具來幫助企業(yè)運用生成式人工智能的力量,例如AI Cloud。馬克·貝尼奧夫預(yù)計,短信息平臺Slack將成為此次人工智能行動的重要組成部分。賽富時還開展了多項交易,比如收購美國加州的Airkit.ai公司,并拓展了其與亞馬遜云科技(AWS)、谷歌和Databricks的合作關(guān)系,以進一步推動其策略。

Scale AI公司

人工智能可以自動運行,但要達(dá)到像ChatGPT這類聊天機器人的先進程度,則需要人類的幫助,而且是海量人力的幫助。盡管OpenAI ChatGPT背后的大型語言模型(LLM)或Anthropic的Claude會自行學(xué)習(xí)語言背后的數(shù)據(jù)關(guān)聯(lián),但要引導(dǎo)和完善這些模型通過聊天機器人界面做出的反饋,各大公司采用了一個名為“基于人類反饋的強化學(xué)習(xí)”的流程。在這個流程中,人類評估者會判斷模型的回答是否是有用、有益和“安全”(通常意味著不會讓人反感或用于傷害他人)。然后,這個模型會因為給出近似于人類評估者所認(rèn)為的好答案而獲得獎勵。然而,所有這一切都需要人力。Scale也因此而有了用武之地,其整個業(yè)務(wù)就是提供人工智能公司所需的數(shù)據(jù)標(biāo)簽。通常,這些制作標(biāo)簽的人都處于發(fā)展中國家,薪資很低。科技博客The Verge稱,例如在肯尼亞,硅谷寵兒Scale AI付給人工模型培訓(xùn)員工的工資在1美元至3美元之間。(一位發(fā)言人稱,這家公司在其經(jīng)營國都會遵守最低薪資法律。)Scale由亞歷山大·王創(chuàng)立于2016年,當(dāng)時他還只有19歲。Scale是很多全球最先進人工智能模型背后的數(shù)據(jù)專家,包括多家自動駕駛汽車公司所使用的模型,并為國防決策提供支持。公司也因此而聲名大噪。這些任務(wù)通常十分簡單而且異常枯燥:發(fā)現(xiàn)零售產(chǎn)品的特征,或識別圖中的物體。盡管Scale在一開始為自動駕駛算法標(biāo)記圖片數(shù)據(jù)中的物體,但它如今拓展了其培訓(xùn)內(nèi)容,并面向廣泛的人工智能模型,其客戶包括Etsy、Instacart、Meta,當(dāng)然還有OpenAI。借助人工智能熱潮,公司共計籌集了約6億美元資金,其最近的估值達(dá)到了73億美元。然而,首席技術(shù)官維賈伊·卡魯納穆爾蒂表示,Scale也在開發(fā)自己的人工智能算法,并打算在尋找外行人之余聘請專業(yè)度更強的專家來培訓(xùn)人工智能模型,比如古亞拉姆語權(quán)威人士。“專家反饋對于幫助模型構(gòu)建思維模式來說異常重要。”

Snorkel AI公司

Snorkel AI的聯(lián)合創(chuàng)始人及首席執(zhí)行官亞歷山大·拉特納說:“數(shù)據(jù)往往被人們忽視了,通常會被當(dāng)作一個上游清潔流程。”盡管費力走過這片統(tǒng)計池沼并不是什么光彩的事情,但拉特納的初創(chuàng)企業(yè)已經(jīng)吸引了私營投資者足夠多的目光,籌集了1.35億美元,截至其2021年8月的最后融資輪,公司的估值達(dá)到了10億美元。這家初創(chuàng)企業(yè)一開始是2015年斯坦福大學(xué)人工智能實驗室(Stanford AI Lab)的一個研究項目。公司客戶包括Wayfair、紐約梅隆銀行(BNY Mellon)和紀(jì)念斯隆-凱特琳癌癥中心(Memorial Sloan Kettering)。本質(zhì)上,Snorkel AI使用人工智能來幫助培訓(xùn)人工智能。每一個人工智能模型都會從數(shù)據(jù)組學(xué)習(xí),通常都是TB級的數(shù)據(jù)組。為了塑造這些數(shù)據(jù)組,Snorkel使用其自有的人工智能算法以及人力。像記者、網(wǎng)絡(luò)技術(shù)人員、或醫(yī)生這類專家會教授Snorkel的模型如何標(biāo)記、清理和塑造數(shù)據(jù)。例如,一位醫(yī)生會教人工智能如何更好地區(qū)分超聲波,而且會教授數(shù)次。拉特納稱,此舉能夠加速數(shù)據(jù)的標(biāo)記和編排,該流程比傳統(tǒng)的技術(shù)快10倍至100倍。他說:“在過去九年中,這種不怎么體面的、混亂的數(shù)據(jù)清理工作一直都是我們的主要賣點。”

Stability AI公司

Stability AI最知名的壯舉莫過于幫助打造了大熱文字轉(zhuǎn)圖像生成系統(tǒng)Stable Diffusion。用戶可以在其中輸入提示,然后生成一幅他們心目中任何事物的人工智能圖像。不過,這家公司還從事著大量其他人工智能項目,均為開源模型,意味著所有人都能夠訪問這些模型。今年春季,Stability發(fā)布了兩款語言模型:StableLM與Stable Vicuna。公司稱,還將發(fā)布其他兩款圖像模型。同時,公司還打造了一款文字轉(zhuǎn)音頻模型,名為Stable Audio,已經(jīng)于今年9月發(fā)布。Stability很早便發(fā)聲支持人工智能開源,也就是人們能夠免費訪問整個模型、所有其代碼和權(quán)重數(shù)據(jù),以及所有的輸出內(nèi)容,而且?guī)缀鯖]有限制。一些大投資者已經(jīng)開始為這家初創(chuàng)企業(yè)的理念買單。PitchBook的數(shù)據(jù)顯示,Stability已經(jīng)籌集了超過1.1億美元,投資者包括Coatue Management和Lightspeed Venture Partners等。公司稱,超過20萬創(chuàng)作者、開發(fā)人員和研究人員,以及7個研究中心都在使用Stability的產(chǎn)品。然而,Stability及其創(chuàng)始人伊馬德·莫斯塔克最近也遭到了審查:據(jù)稱,莫斯塔克以前就愛說大話。福布斯(Forbes)的調(diào)查發(fā)現(xiàn),在莫斯塔克有關(guān)自己背景和Stability客戶的多項言論中,一部分是假的,而剩余部分都存在夸大之處。據(jù)稱,諸多資深高管和人工智能專家在今年離開了公司。然而,公司稱整體員工數(shù)在增加,而且其收入基數(shù)在今年翻了10倍多。Stability在今年11月初又迎來了好消息,因為莫斯塔克于X上發(fā)布:“在上個月,我們靠自己完成了戰(zhàn)略融資(即將發(fā)布聲明)。”彭博社隨后報道稱,Stability獲得了5,000萬美元的債務(wù)融資,由英特爾領(lǐng)投。不過,彭博社還指出,Coatue Management和Lightspeed與莫斯塔克在Stability的管理和發(fā)展方向上產(chǎn)生了分歧,并于隨后拒絕向該公司提供進一步的融資,同時放棄了其在公司董事會的席位。

Sudowrite公司

“這么說可能有爭議,但我認(rèn)為生成式人工智能的日常用戶不應(yīng)該使用Sudowrite。”Sudowrite投資方之一、Garuda Ventures的聯(lián)合創(chuàng)始人里希·塔帕里亞表示。不過,塔帕里亞的觀點進一步證明了Sudowrite更重視為專業(yè)作家服務(wù),對市場規(guī)模有限則沒有那么關(guān)注。Sudowrite自稱創(chuàng)意寫作的人工智能平臺。其設(shè)置有助于劇本和小說創(chuàng)作,也能夠完成檢查情節(jié)節(jié)奏和改寫對話等特定任務(wù)。不同于生成式人工智能常見的滿屏文字,軟件布局添加了人物圖片和交互式時間線等視覺元素,方便整理大綱。

Sudowrite的聯(lián)合創(chuàng)始人阿米特·古普塔和詹姆斯·余在寫作小組中相識,當(dāng)時兩人都賣掉了之前的公司在休假。古普塔表示,目前該平臺已經(jīng)有1.2萬名付費用戶,每月的訂閱費用從10美元到100美元不等。古普塔對《財富》雜志表示,目前Sudowrite只募集300萬美元,還沒有繼續(xù)募資的計劃。

Synthesia公司

在人工智能熱潮中,人工智能視頻創(chuàng)作平臺Synthesia一躍成為獨角獸。該公司創(chuàng)立于2017年,四位創(chuàng)始人曾經(jīng)在倫敦大學(xué)學(xué)院(UCL)、斯坦福大學(xué)、慕尼黑工業(yè)大學(xué)(TUM)和劍橋大學(xué)(University of Cambridge)求學(xué)。其產(chǎn)品利用人工智能主要為教學(xué)視頻創(chuàng)建視頻形象,為企業(yè)客戶節(jié)省了時間和制作成本。截至2023年6月,該平臺已經(jīng)為5萬家企業(yè)生成超過1,200萬個視頻,其中包括近一半《財富》美國100強企業(yè),相關(guān)企業(yè)使用Synthesia在幾分鐘內(nèi)就可以制作產(chǎn)品營銷和教學(xué)視頻。公司業(yè)務(wù)增速高達(dá)456%,難怪在Accel領(lǐng)導(dǎo)的C輪融資中順利籌集到9,000萬美元,還獲得英偉達(dá)風(fēng)投部門的投資。“Synthesia最重要的理念之一是實用性而非求新。雖然過去六個月出現(xiàn)了因為炒作而造成的波動,但我認(rèn)為這一輪熱潮和投資者的興趣在很大程度上證明了人工智能技術(shù)背后強大的商業(yè)基本面。”首席執(zhí)行官及聯(lián)合創(chuàng)始人維克多·里帕貝利告訴彭博社。今年6月,Synthesia的C輪融資募集了9,000萬美元,其中英偉達(dá)的風(fēng)投部門對其估值為10億美元。頗具爭議的是,根據(jù)《連線》(Wired)雜志報道,該公司創(chuàng)建的一些高度逼真的形象,特別是一個名為杰森的虛擬新聞主播,以及名叫達(dá)倫和蓋瑞的形象在馬里、布基納法索、委內(nèi)瑞拉被用于政治虛假信息宣傳活動,還出現(xiàn)在美國加州一個加密貨幣騙局廣告里。里帕貝利告訴《連線》雜志,后來該公司做了一些調(diào)整,盡力防止虛擬形象被用于虛假信息宣傳,具體舉措包括從面向消費者的賬戶中屏蔽與新聞相關(guān)的劇本,以及聘請內(nèi)容審核員審查用以生成虛擬形象的劇本等。

Together公司

人工智能需要堪比成千上萬臺電腦的龐大計算能力,如果使用云計算,亞馬遜云科技、谷歌云(Google Cloud)和微軟Azure就都是很難繞過的巨頭。聯(lián)合創(chuàng)始人及首席執(zhí)行官維普爾·韋德·普拉卡什表示,為挑戰(zhàn)巨頭的主導(dǎo)地位,Together“匯聚”小型云,為人工智能研究人員和開發(fā)人員提供同等水平的算力,成本可能只有云計算巨頭的五分之一。該公司由斯坦福大學(xué)的教授和科技行業(yè)資深人士領(lǐng)導(dǎo),2023年5月宣布獲得2,000萬美元的種子資金。Together將開發(fā)者的計算需求外包給其他數(shù)據(jù)中心,甚至是以前的比特幣(Bitcoin)礦工。公司還為普通開發(fā)者和想從頭開始搭建模型的人提供了全面的人工智能開發(fā)平臺。“OpenAI和谷歌的資源已經(jīng)夠集中了。”普拉卡什說。“所以我認(rèn)為,去中心化、更少鎖定的生態(tài)系統(tǒng)是有價值的。”

Tome公司

想象一下PowerPoint——不過加上了人工智能。這就是2022年9月成立的初創(chuàng)公司Tome向投資者和客戶推銷的內(nèi)容。截至2023年7月,該公司已經(jīng)吸引到1,000多萬用戶,并以最新的3億美元估值募集到8,100多萬美元。歸根究底,Tome由兩位曾經(jīng)在Meta工作的主管創(chuàng)立,使用Stable Diffusion、ChatGPT等大模型,還有自己的專有人工智能為用戶生成自定義演示和圖像。不過該初創(chuàng)公司的聯(lián)合創(chuàng)始人及首席執(zhí)行官基思·佩里斯稱,他的愿景可不只是制作幻燈片。“就像濕陶土,能夠做成任何東西。”他談到Tome的產(chǎn)品時說。佩里斯指出,創(chuàng)建者不僅可以建立宣傳平臺推銷最新的人工智能工具,還能夠創(chuàng)建旅行指南、簡歷或小型網(wǎng)站。之前,Tome依賴人工智能模型生成普通的文本和圖像,但一位發(fā)言人表示,今后Tome將越來越多集成外部數(shù)據(jù),比如用戶谷歌賬戶里的文件,從而進一步完善人工智能生成的幻燈片。

You.com公司

早在最近一波人工智能熱潮席卷全球之前,有家公司就已經(jīng)測試過人工智能聊天搜索。提示:You.com。該公司全新的搜索引擎使用生成式人工智能從事網(wǎng)絡(luò)搜索、內(nèi)容和圖像創(chuàng)建,而且非常重視用戶數(shù)據(jù)隱私。You創(chuàng)立于2020年,創(chuàng)始人理查德·索切爾曾經(jīng)在賽富時擔(dān)任首席科學(xué)家,賽富時的首席執(zhí)行官馬克·貝尼奧夫的Time Ventures牽頭提供了2,000萬美元種子資金。隨后,該公司獲得了2,500萬美元A輪融資,由Radical Ventures領(lǐng)投,Salesforce Ventures也追加了投資。1996年以來,該公司的域名一直歸貝尼奧夫所有且未被使用。You.com的搜索欄似乎跟谷歌相似,不過相似之處也僅限于此。此前索切爾就曾經(jīng)指谷歌保護隱私的手段“相當(dāng)糟糕”。該公司在搜索和隱私領(lǐng)域還有幾家競爭對手,比如DuckDuckGo,不過You將數(shù)據(jù)隱私和生成式人工智能功能結(jié)合的做法脫穎而出。2023年6月,該公司為推動產(chǎn)品變現(xiàn)推出了名叫YouPro的付費訂閱服務(wù),付費用戶每月支付9.99美元,便可以無限量地訪問人工智能聊天和其他生成式人工智能功能,而且沒有廣告。今年9月,該公司在WhatsApp上推出了一項人工智能搜索功能,正式把對話搜索功能整合入全球最流行的通訊應(yīng)用程序之一里。(財富中文網(wǎng))

譯者:Biz、Feb

Will AI create a world where no job is needed? Will computers achieve human-level intelligence? Where will the dramatic OpenAI storyline end up? The drama unfolding in the world of AI has proven that readers and investors need to follow the space closely—and it's changing minute to minute. Predictions, ideas, and execution around the technology are, to put it mildly, all over the map. But one thing we know for sure about this sector, which is still in its infancy: Investors and companies large and small are taking it seriously. Microsoft—itself a major player via its relationship with OpenAI—recently found that for every $1 invested in AI, companies are reaping $3.50 in return. And according to Crunchbase, one in four dollars invested in American startups have gone to AI companies this year; already 200 AI unicorns have been created. But as anyone who has lived through a hype cycle knows, even the hottest sector mints far more miserable failures than stunning successes. For the inaugural Fortune 50 AI Innovators list we canvassed VCs, industry analysts, and our own formidable staff of AI experts to identify companies that are at the cutting edge. One thing we know for sure: The work these companies are doing won’t just shape the future of AI, it will shape the world we all live in.

Abnormal Security

When ChatGPT launched in November 2022, Evan Reiser’s first thought was how amazing the technology was. And then: “Oh, my God, the bad guys are going to get this too,” he recalls. Reiser cofounded Abnormal Security in 2018 with Sanjay Jeyakumar to help detect and prevent email cyberattacks. The company uses AI and machine learning for behavioral profiling, analyzing data from company platforms like Slack to help spot socially engineered email scams and determine whether messages were sent by an actual employee or by a hacker posing as one. Reiser says the explosion in popularity of ChatGPT and other chatbots has increased the sophistication of email attacks. But Abnormal is planning to be around for the long haul to combat them: Earlier this year, the firm integrated with workplace software including Slack, Zoom, and Microsoft Teams, and plans to add others, like Salesforce or ServiceNow. The company says its customers include 12% of Fortune 500 companies. And recently, the company announced it passed $100 million in annual recurring revenue. It’s also flush with funding: Abnormal has raised over $280 million from investors including Insight Partners, Greylock Partners, and Menlo Ventures, and is valued at $4 billion. Having teased IPO plans for years, Reiser says now the company is focusing on doing more to protect customers, and it could go public in a couple of years.

Absci

Absci founder and CEO Sean McCLain didn’t set out to build a drug-generating A.I. company in 2011. He set off to find a way to engineer proteins for more effective treatments. What he ended up building was the technology to gather protein-based data that large language models can use to predict the best drug for a biological problem. The wet labs can generate and test 3 million AI-generated drug designs in a six-week time frame. The company has created an immunology antibody (McClain declined to disclose the disease it will target) that it anticipates will be in use in 2025. Absci went public in 2021, with a share price of $16 that jumped to $28.48 within the week, valuing the company at more than $2 billion. But that would be its peak, as the share price dropped drastically over the following year and has stayed under $5 per share since May 2022. The company administered layoffs in August 2022 amid a restructuring.

Adept AI

Adept AI is among the companies creating the next generation of AI business assistants—AI that doesn’t just generate words, but can perform actions and analysis for executives using every piece of software on their desktop. The San Francisco-based startup counts among its co-founders former Google researchers David Luan, Niki Parmar and Ashish Vaswani, all AI royalty. Parmer and Vaswani, who were part of the Google team that invented the Transformer model on which the entire LLM revolution has been based, exited Adept in 2022 for another startup. But Adept is still on track to make a big splash. The company launched from stealth over a year ago and has raised $415 million total in VC funding.

Adobe

Adobe, the creative design and editing giant that brought in $17.61 billion in revenue during fiscal year 2022, has made a splash in the generative AI space. The company employs more than 29,000, and you might expect AI development to be sluggish as a result. But chief technology officer Ely Greenfield says that it mobilized quickly on years of data collection and research to launch Firefly in less than a year.

Two things set this tool apart. First, it is integrated into tools that creatives already use. Photoshop users can deploy Generative Fill to implement text-to-image edits, like changing the pattern of a shirt or dropping a new object into the photo. Second, the generated imagery is, the company says, safe for commercial use, with Adobe offering to idemnify users against any copyright infringement claims. Firefly is trained on the company’s vast catalog of Adobe Stock content, which it says it has the right to use for AI training (despite complaints from some Adobe Stock creators that they didn’t realize they were giving Adobe the right to do this when they uploaded imagery.) Adobe is eyeing integrating generative AI into more tools in the Creative Cloud.

In October the company unveiled Firefly Image 2, which brought quality upgrades to AI-generated images and allows users to pick specific styles that they want their generated image to resemble. The next frontier, said Greenfield, comes with artists’ acceptance of A.I. He sees a world in which artists could train A.I. on their own work and license it out.

Aligned AI

Aligned AI made a name for itself when its content moderation filter crushed OpenAI’s. It captured 97% of problematic responses compared to OpenAI’s 32%, Fortune’s Jeremy Kahn reported. Since then, it has become the first company to show that its AI model can master a challenging AI safety and alignment benchmark based on the simple video game environment CoinRun. Safety has been Aligned AI’s calling card from the get go. “You can actually think logically about danger from artificial intelligence, and create technical solutions that make progress on the problem,” says Rebecca Gorman, Aligned AI cofounder and CEO. Gorman and Stuart Armstrong started the Oxford, England-based startup in December 2021 with the idea that capabilities and safety in AI didn’t have to be a zero-sum game. Instead, they believe that the safer AI is, the more effective it will ultimately be, because end users will trust it more.

The company is still in the early stages of its development, with £600,000 (approximately $762,000) in pre-seed money and just six employees. It’s now ramping up hiring of technical roles as it looks to develop partnerships with AI industry players it hopes to provide with safety features. Aligned aims to partner with the major industry players for each use case of AI, like quality assurance or robtoics, Gorman says.

Aligned Research Center (ARC)

One of the few nonprofits on our list, the Alignment Research Center (ARC) was founded in June 2021 by former OpenAI employee Paul Christiano to study the “alignment problem”—the question of how to align AI’s actions with human values, a challenge that becomes more daunting as AI systems approach artificial general intelligence (or AGI), a single AI model that can perform all cognitive tasks a human can as well or better than we can. If AI starts to develop intentions of its own–even if these are just sub-goals needed to accomplish a human-specified primary goal–alignment becomes a pressing issue. ARC has worked with big AI houses like OpenAI and Anthropic to “red team” their models by seeing how the models respond to the kinds of prompts a malicious actor might use, and to see if the models themselves are capable of potentially dangerous self-direction actions, such as deception or self-replication. When OpenAI granted ARC access to its GPT-4 model before it was released to the public, ARC tested whether it could do things like hide itself on a server or lie to humans—no to the first, yes to the second. We can all sleep easier knowing ARC doesn’t think that present-day AI systems could pose the existential risks the most ardent “AI doomers” fear. But that may not remain true for much longer.

Anthropic

Who can rival OpenAI’s ubiquitous chatbot ChatGPT? A team of ex-OpenAI researchers are hoping the answer is Anthropic. Former OpenAI research executives including brother and sister Dario and Daniela Amodei founded Anthropic in 2021 to create the safest AI systems out there—ones that wouldn’t spew misinformation or harmful responses as some chatbots, including ChatGPT, have been known to do. Anthropic’s chatbot Claude, released in early 2023, has some notable differences from its peers: The company claims the chatbot is “l(fā)ess likely to produce harmful outputs,” and describes its aim as being helpful, harmless, and honest. The startup also recently expanded the number of words Claude can process in one query to 75,000—the length of many novels—which it says enables Claude to accurately analyze technical documents like financial filings or legal contracts. (OpenAI has recently expanded the number of words ChatGPT can process to counter Anthropic’s advantage.) Go-to-market lead Sandy Banerjee told Fortune that Anthropic has customers “in the thousands” using Claude, from Y Combinator startups to large public companies like Zoom. The company recently raised a whopping $4 billion from Amazon and is reportedly in talks to raise $2 billion more from Google. That is on top of $550 million the company had raised previously from Google and funding from other investors including Menlo Ventures and Salesforce Ventures.

Anyscale

What do OpenAI, Instacart, Netflix, Cohere, and Uber have in common? They all use Ray, the open-source software infrastructure framework that helps AI developers scale their networks, according to its maker, four-year-old startup Anyscale. In recent years, building and running AI models has become increasingly compute-intensive—meaning it can be difficult and time-consuming to distribute the compute workloads needed to train, tune, and run massive AI systems across clusters of servers. “It’s very common for people working in AI to spend 50% of their time setting up clusters of machines and configuring the resources,” Anyscale CEO and cofounder Robert Nishihara told Fortune. Ray is handling that infrastructure side of things, reducing the time to train and deploy AI models to minutes, they say. Ray was developed as an open-source project by a group of researchers at the UC Berkeley RISELab, and later became the main product of Anyscale, which is now funded by top Silicon Valley investors, including Andreessen Horowitz, NEA, Addition, and Intel Capital. As interest in building AI systems has skyrocketed over the past six months, so has demand for Ray, Nishihara says. And he says they’ve noticed a big trend: More regular developers with no machine learning expertise are wanting to build AI applications. For Anyscale that means “this is a much bigger market than just machine learning experts,” he said. Currently Ray is an open-source platform that’s free to use, and Nishihara estimates there are tens of thousands of companies using Ray. As for Nishihara, “we’re all busier now,” he says of his day-to-day life in recent months.

Baidu

Baidu, a Google clone that has a market capitalization of almost $38 billion on the New York Stock Exchange as of November 2023. While best known for its Chinese-language-optimized search engine, it also has its tendrils in a suite of other technologies, especially artificial intelligence. Baidu has trained a ChatGPT competitor, ERNIE bot, named after the famed Muppet on Sesame Street. (In an inside joke among AI developers, many models borrow their names from the Muppets.) In October 2023, the firm released ERNIE 4.0 and claims that it outperforms OpenAI’s chatbot in a number of Chinese-language-specific tasks and matches ChatGPT in sophistication and capabilities. And, in addition to using machine learning in its search engine, cloud computing arm, and other products, Baidu is developing autonomous driving algorithms and has a fleet of driverless “robotaxis” that navigate the busy streets of Beijing and three other Chinese cities.

Bloomberg

The financial information giant launched BloombergGPT in March for research purposes. It has 700 million tokens, although currently only 600 billion tokens were used to train the model. BloombergGPT outperformed similar AI tools in both finance-specific and general language comprehension tasks, according to the company. With more than half of the data used to train it coming from proprietary information, BloombergGPT could offer a future template for corporate uses of AI. The company is already a leader in using natural language processing to help users of its financial data and news services find the information they need and to gain trading insights such as sentiment analysis. It also a pioneer in using AI to write headlines and corporate earnings stories.

C3.ai

AI is now all the rage. But C3 AI began positioning itself in the market over a decade ago. In March, C3 AI released C3 Generative AI, making it one of the first companies to offer a generative AI solution that ran on an enterprise’s own information systems. C3 Generative AI projects are now in place at Georgia-Pacific, Flint Hills Resources, Nucor, Pantaleon, Con Edison, and multiple U.S. Department of Defense agencies including the U.S. Air Force and the Missile Defense Agency. Using the technology, the Missile Defense Agency was able to reduce flight test analysis and report time from one to two months to one week, the company says. More broadly, the Redwood City, Calif.–based company, run by billionaire enterprise software guru Tom Siebel, has provided AI tools for sectors that include manufacturing, financial services, and oil and gas. It’s involved in some of the largest energy optimization and predictive maintenance projects with companies including European utility Enel, Duke Energy, and Shell plc. Founded in 2009, the company went public in December 2020. C3 AI’s total revenue for fiscal year 2023 was $266.8 million, an increase of 5.6% compared to its FY ’22.

Cerebras

Cerebras’s flagship computer chip is the size of a “dinner plate,” cofounder and CEO Andrew Feldman says. It’s the largest chip ever built, he claims. That huge chip is designed to make it easier to run today’s massive AI models without having to worry about splitting the workload among many different GPUs. Since its founding in 2016, Cerebras has moved beyond chip-making to make its mark throughout the AI pipeline, from developing its own custom servers to now its own open-source AI models and datasets. Along the way, the company has accrued about $720 million from private investors at a valuation over $4 billion as of its last funding round in November 2021. Almost two years later, in July 2023, the company unveiled Condor Galaxy, a network of nine “supercomputers” powered by those dinner plate-size computer chips, and among its customers it counts COVID vaccine developer AstraZeneca and the Pittsburgh Supercomputer Center. While Cerebras often touts the size of its chip and data centers, CEO Feldman says his company is not done growing yet: “We’re building bigger and faster supercomputers to enable customers to do this work faster.”

Character.AI

What if you could talk to Elon Musk? Or have a conversation with Draco Malfoy from Harry Potter? Character.AI lets users chat with everyone from billionaires and celebrities to historical and fictional characters. The online generative AI chatbot uses deep learning algorithms and large language models to engage the user in conversation the way the character it’s mimicking would in real life. Character.AI was founded in 2021 by ex-Google engineers Noam Shazeer and Daniel De Freitas, who serve as CEO and president of the startup, respectively. Earlier this year, it raised a $150 million Series A led by Andreessen Horowitz at a $1 billion valuation. The startup is reportedly in talks to raise more VC funding at a $5 billion valuation, including from their former employer Google, per Reuters. Character.AI is free to use, but users can pay a $9 monthly subscription to skip the virtual queue to talk to characters. The company said its website attracted 100 million monthly visits in the first six months after its launch.

Cohere

While it doesn’t have as high a profile as competiotrs OpenAI and Anthropic, Cohere, an AI model developer created by Google Brain alumni, aims to be the AI platform for enterprises. Cohere builds large language models that companies can use to incorporate AI into things like copywriting and search and summarization of texts and web pages. The four-year-old startup’s products have caught on with a host of companies, including Spotify, Oracle, and Jasper. But feeding sensitive data into large language models has sparked a broader concern over privacy. To prevent companies’ proprietary data getting in the wrong hands, Cohere says, it provides services directly to the companies—be that with its existing cloud provider or on-site—so they can control their own data. In June, Cohere announced it had secured a $270 million Series C funding round from investors including Index Ventures as well as mega tech, software, and chip players Nvidia, Oracle, and Salesforce. Earlier this year the company also launched its enterprise AI assistant, Coral. “It’s a big challenge to stay ahead of the curve in terms of our models,” Aidan Gomez, Cohere’s cofounder and CEO, told Fortune in a note, but “it’s an exciting time to be working in the space.”

Conjecture

Connor Leahy, the cofounder and CEO of Conjecture, has an emerged as one of the leading voices calling for strict limits on building ever more capable “frontier” models because he feels AI poses an existential risk to humanity. But, in the meantime, London-based Conjecture is racing to figure out how to control large AI models and building some fairly capable AI systems of its own. Conjecture is a fairly new entrant in the AI race, having been established in March 2022. The company is backed by a group of investors including former Github CEO Nat Friedman and former senior AI director at Tesla Daniel Gross. Its founders, who in addition to Leahy include Sid Black and Gabriel Alfour, come from dynamic backgrounds—Leahy reverse-engineered GPT-2 and cofounded AI research lab EleutherAI with Black, while Alfour has founded two blockchain startups. Conjecture believes that existing large language models are black boxes that humans have little control over beyond the data they provide it with, and wants to offer an alternative to this approach which make systems explainable, bounded, and reliable. The AI company has raised $25 million so far.

Databricks

The San Francisco–based enterprise software company has been around for a decade, but is now putting its AI front and center. The company created its own bargain basement generative AI chatbot—Dolly—which cost only $30 to develop. Dolly 2.0 is an open-source model, which means that an organization can commercially use the same training sets and data the company did to build the chatbot. The hope is that others will be inspired to build their own generative AI tech. Dolly doesn’t have accuracy or the breadth of capabilities that ChatGPT does. But the point was to show that for a basic, no-frills chatbot, a company didn’t need to spend big bucks and have tons of data. In May 2023, the company surveyed over 9,000 of its customers about how they were adopting AI and found that there was increasing demand for the company’s data and AI platform, Databricks Lakehouse. A month later it acquired MosaicML, a innovative platform that lets users create their own generative AI models, in a deal valued at $1.3 billion. Databricks also garnered an additional $500 million in Series I venture capital funding in September with Nvidia as a new strategic investor.

Eleuther AI

In May 2020, OpenAI released a research paper that detailed how the larger an AI language model is, the more capable it is. “The limit, as far as we’re aware, is the amount of money you’re willing to spend,” Stella Biderman, executive director of EleutherAI, said. In tandem, OpenAI restricted access to ChatGPT-3 only to approved researchers. Some were frustrated, and on a Discord server, they banded together in a collective eventually named EleutherAI to try to replicate the scale of OpenAI’s achievement. “Society has mechanisms for interacting with technology that are very hard to actually carry out if the technology is locked up behind closed doors,” Biderman said. The group, a hodgepodge assortment of computer science, philosophy, and English majors, soon released a series of large language models. And in early 2022, it unveiled GPT-NeoX-20B, which, at the time, was the largest large language model ever to be made publicly available. The research collective has since pivoted from building large, open-source models to other areas of AI research, including studies delving into the limitations and risks of AI. “Nowadays, there’s a lot more companies that are interested in providing open-source models,” Biderman said of EleutherAI’s impact.

Eleven Labs

“You have a movie where there is one voice that will speak over all the scenes and all the voices to deliver the content in the Polish language. As you can imagine, it’s a pretty bad experience,” noted ElevenLabs cofounder Mati Staniszewski, who experienced this problem alongside his best friend and cofounder, Piotr Dabkowski. Combining their experience in machine learning at Palantir and Google, they debuted AI-powered speech software in January 2023 that turns text into spoken words. Users can design their own AI voices, but what really caught people’s attention was how good their software is at cloning people’s voices from short audio samples. While ElevenLabs’ terms and conditions state that people must have permission to replicate others’ voices, the software attracted attention after people used it to create unauthorized audio deepfakes of celebrities such as Ben Shapiro and Emma Watson saying offensive things and it is beleived that criminals may have used the software to help perpetrate a series of scams. “That’s something that we don’t support, and we’ll always take action,” Staniszewski said, and added that all audio files on the platform are traceable. Other safeguards have been put in place to verify users and make sure the voices they are cloning are their own. ElevenLabs insists that its software’s real killer use case will be to help creators, corporations, and audiobook publishers expand the geographic reach of their content, enabling someone to translate spoken words into over 20 languages without distorting the original voice. They have reported hundreds of thousands of paid registrations but declined to provide revenue. It raised $19 million in a June 2023 Series A, led by former GitHub CEO Nat Friedman, Daniel Gross, and Andreessen Horowitz.

EvenUp

Lawyers have tedious jobs, and sifting through paperwork can take hours. For those who specialize in personal injury claims, it can take months for their clients to get paid, if at all. EvenUp, a four-year-old startup, aims to slash that time and get clients higher settlements. The buzzy startup has caught the eye of top Silicon Valley investors—and the AI zeitgeist—raising nearly $65 million from venture firms including Bessemer Venture Partners and Bain Capital Ventures in reportedly highly competitive rounds (EvenUp reportedly raised even more since). EvenUp CEO Rami Karabibar, claimed customers saw a 30% increase in payouts, plus time savings, he told Reuters in June. So far, the startup has about 500 customers—only a fraction of what Karabibar estimates is the pool of 300,000 personal injury attorneys who could use its product. EvenUp users pay a sum—ranging from thousands to hundreds of thousands of dollars—for an annual subscription, and Karabibar told Reuters the firm has more than $10 million in recurring revenue in 2023. Though other startups are going after the AI-for-lawyers space, investors like that EvenUp is focused on a specific niche. “By not trying to be everything to everyone in the expansive legal services landscape, they are laser-focused on creating tremendous value for their customers,” Sarah Hinkfuss, partner at Bain Capital Ventures, who invested in EvenUp, told Fortune.

Exscientia

To date, no drug discovered through an AI-led process has made it past Phase II human clinical trials. Exscientia is among the companies working hard to change that. Founded in 2012, the company, based in Oxford, England, has brought six drugs that it discovered with the help of AI into clinical trials. (A Japanese pharmaceutical company now holds exclusive rights to three of those.) Its current portfolio runs the gamut from anticancer meds to anti-inflammatory molecules, and the firm has raised serious cash, going public in October 2021 at a valuation of almost $3 billion. (Its market capitalization is approximately $680 million as of October 2023.) Andrew Hopkins, Exscientia’s founder and CEO and a longtime veteran of the pharmaceutical industry, says his AI-powered drug-discovery process significantly reduces the time needed to find promising molecules compared with legacy firms. “It really is a huge reduction by allowing the use of generative AI with our expert chemists to really help them in those design decisions,” he said.

Google DeepMind

Big Tech has been salivating over recent innovations in artificial intelligence, but Google has long been a pioneer in AI. Google Research as well as DeepMind, which was acquired by Google in 2014 and recently merged with its sister AI research organization to become Google DeepMind, have been responsible for some of the most significant AI breakthroughs in the past decade including: AlphaGo, the first computer program to defeat a professional human player of the board game Go; AlphaFold, an AI system that predicts protein structure; and generative AI chatbot Sparrow. And in 2017, Google Research invented the Transformer, a neural network design that is the underlying technology in most of today’s generative AI products. Google has also been working to infuse AI into all its products, including its Workspace office productivity software. It launched Bard, a chatbot, based on its powerful PaLM 2 large language model, that is Google’s answer to OpenAI’s ChatGPT and Microsoft’s OpenAI-powered Bing. It is also preparing to unveil a next generation AI model called Gemini that it has teased is more capable than any AI modeled yet unveiled by any competitor. It is believed the company is probably working hard on building AI systems that will act as agents for users across the internet, doing everything from booking flights and restaurants, to doing your online grocery shop for you. Google has also been trying to use its generative AI chops to lure more big business customers to its Google Cloud Platform. Some industry watchers argue Google’s wealth of data and deep AI bench will work to its advantage, allowing it to fend off any significant challenge from Microsoft and OpenAI. Plus, the Big Tech giant isn’t only focused on its own AI projects: Google reportedly invested $300 million in AI model developer Anthropic, which is also on Fortune’s list. Still, there’s no getting around the fact that many generative AI use cases pose a long-term challenge to Google’s business model, which is based primarily around advertising, not software-as-a-service subscription models which seem more applicable to a world where users no longer go out looking for stuff on the internet but instead depend on AI agents to bring us stuff they find for us. You can’t monetize AI eyeballs like real ones.

Hippocratic AI

Hippocratic AI cofounder and CEO Munjal Shah envisions a world with 10 times as many nurses as we have today. They could call you to read lab results, help manage chronic condition care, and answer your questions—all in your preferred language. Except it would be an AI nurse, trained on a health-care-specific large language model. And it could cost as little as five cents an hour to deliver that care.The startup’s large founding team includes physicians, the former COO of a major hospital, and a coauthor of Google’s medical LLM, Med-PaLM.

Hippocratic AI launched in May 2023 with a $50 million seed round led by General Catalyst and Andreessen Horowitz. Shah said products won’t hit the market until they have achieved accuracy benchmarks and have the necessary guardrails in place. At that point, it will be partnering with health care systems to implement the products.

Hugging Face

There’s no bigger player in the market for open-source AI models than Hugging Face, which has become a must-stop shop for AI developers hunting for models and tools they can easily use to build AI-powered stuff without having to pony up huge fees to OpenAI, Anthropic, or Google. The company was founded in 2016 by three entrepreneurs who were originally developing a fun chatbot for the iPhone (the name was inspired by the so-called Hugging Face emoji). But enthusiasm from the AI community saw the company change its focus, becoming a platform that helps AI developers with find models, datasets, and tools. It is also become the go-to distribution platform for anyone else who wants to put an open-source AI model or dataset out into the world, much as GitHub is for more conventional code. Hugging Face also builds some open-source AI models of its own, with its LLM BLOOM being the most well-known. The firm’s open-source play has certainly paid off: Hugging Face reached a $4.5 billion valuation in August 2023 after a $235 million Series D round led by Salesforce Ventures.

IBM

Big Blue, based in Armonk, N.Y., was early to the AI game with Watson, which was first introduced over two decades ago, mesmerizing the world with what the tech could do. In 2023, the company launched its generative AI offerings, called Watsonx, with the conviction that the technology will bring about a productivity boom. CEO Arvind Krishna expects close to a third of current roles at the company can be taken over by AI and automation in the next five years, freeing up human staff for high-value work. The benefits from boosting productivity could mean reinvestment and larger margins, Krishna suggested. For its part, IBM’s Watsonx already has clients like NASA and Wix on board. The company also brings AI to clients to assist them with automation, modernization, and providing customer care services. For instance, Brazilian bank Bradesco automated its customer service answers using Watson Assistant, responding to 283,000 questions monthly. IBM is focusing on expanding the use of its AI where it is scalable and relevant, while strengthening its position beyond a legacy IT business; it has committed to training 2 million people in AI over the next three years. It acquired software company Apptio in a $4.6 billion deal to complement its AI portfolio and Red Hat cloud business.

Inflection

This startup may be young and under the radar to many, but it’s not to be underestimated. It has a heavy-hitting founding team, including Google DeepMind cofounder Mustafa Suleyman, former DeepMind principal scientist Karén Simonyan, and LinkedIn cofounder and venture capitalist Reid Hoffman, Inflection has raised more than $1.5 billion in funding so far from investors like Microsoft and Nvidia. The company released conversational generative AI chatbot Pi, which is designed to be an emotionally supportive conversationalist and can be integrated into iMessage and other communication platforms. “Pi is a new kind of AI, one that isn’t just smart but also has a good EQ. We think of Pi as a digital companion on hand whenever you want to learn something new, when you need a sounding board to talk about your day, or just pass the time with a curious and kind counterpart,” said Suleyman when the chatbot launched. What is notable about Pi though is what is under the hood, Inflection’s Inflection-1 LLM, which can rival those created by OpenAI and Anthropic on some tasks. And Suleyman has long hinted that he sees the future of the company in the race to create not just an EQ-enabled chatbot, but an AI-powered, personal “chief of staff” that will help users organize their work and personal lives and perform myriad tasks on their behalf. In July, the company joined Amazon, Microsoft, OpenAI, Meta, and other AI labs alongside the White House to commit to establishing safe AI measures.

Intuit

When it comes to developing useful AI systems, data is everything. And financial software giant Intuit, maker of TurboTax, QuickBooks, Credit Karma, and Mailchimp, has a lot of it. Earlier this year, the company announced GenOS, its proprietary operating system for generative AI development that works with best-in-class third-party large language models (LLMs), as well as Intuit’s own custom-trained financial LLMs, fine-tuned to solve tax, accounting, cash flow, personal finance, and marketing challenges. The company works with over 24,000 financial institutions, and they generate 65 billion machine learning predictions per day. “We don’t have a group on the side working on AI. It is core to everything that we design,” Intuit CEO Sasan Goodarzi said at a Fortune conference last year. The company continues to incorporate AI into its human financial expert offerings in its TurboTax Live and QuickBooks Live products, and in September released Intuit Assist—the company’s generative-AI-powered financial assistant that works across all Intuit products.

Jasper AI

Jasper AI first got onto venture capital firm IVP’s radar when an internal sourcing tool flagged Jasper’s site as among the top 1% of prospects out there. “Jasper was one of the only software tools I’ve ever heard people refer to as a person,” says Karthik Ramakrishnan, who led IVP’s investment in Jasper. “People would actually say, ‘He helped me come up with a blog post,’ or ‘He helped me deliver my campaign much faster.’”

Created by former marketers and best friends Dave Rogenmoser, J.P. Morgan, and Chris Hull to help other marketers develop advertising campaigns, Jasper has built an extremely loyal following among its 100,000 paying customers. The platform enables users to write copy, create images, and even select different brand voices. The challenge now is to simplify all those features and make it easier for users to find them all, says Rogenmoser. Originally built on OpenAI’s tech, Jasper has now started to build its own models, especially as it looks to deliver more bespoke offerings to its enterprise customers.

Despite being founded in early 2021, Jasper has already achieved significant financing milestones, having raised $125 million in a Series A from the likes of Bessemer Venture Partners and HubSpot Ventures, and has even reached unicorn status with a $1.5 billion valuation. This has led Jasper to grow its headcount from nine people to more than 200 over the past year and a half, according to Rogenmoser.

LAION

Christoph Schuhmann is an unassuming high school teacher in Hamburg. He is also a cofounder of one of the most influential nonprofits in the field of AI. In 2021, Schuhmann and other part-time AI researchers established LAION, short for “Large-scale Artificial Intelligence Open Network.” In a field dominated by tech behemoths like OpenAI and Google, their nonprofit wants to make AI open-source, or freely available to researchers like them. And the team has had unprecedented success. Stability AI, the company behind popular image generator Stable Diffusion, trained its model on a dataset of billions of image-to-text pairs that Schuhmann curated between the physics and computer science classes he teaches every weekday. Google, Meta, and Microsoft have also used LAION’s datasets to train their own AI algorithms, Schuhmann says. And his nonprofit is now training its own open-source models. “We really try to democratize not only datasets, but also models and code,” says Robert Kaczmarczyk, a cofounder of LAION and a doctor in Munich. But LAION is also controversial. Its datasets contain tens of thousands of copyrighted works. Under EU law, non-commerical entities such as LAION allowed to use copyrighted material for data mining. But artists and copyright holders say that LAION engages in “data laundering” and that it violates the spirit of the EU data mining law when it then sells or makes its datasets available to for-profit partners, such as Stability and others.

LangChain

Vanilla ChatGPT is, well, sort of vanilla. Its ability to generate almost any style of writing is impressive, but, until recently, it didn’t have access to Wikipedia, couldn’t report today’s weather, and didn’t have analyses of the Supreme Court’s most recent decisions. Developers, however, can load outside information into the chatbot to make its often subpar responses remarkable. And while this can be technically difficult for a newbie who wants to automate the process, LangChain has developed comparatively easy-to-use, open-source tools to fully exploit the power of large language models. It allows developers to chain prompts together, save prompts, and gives AI models easy ways to access external databases. Many of these features were so popular that OpenAI has essentially tried to copy them with its new GPT tools. But, especially for those new to developing AI applications and for those who want to use models other than OpenAI’s GPTs, LangChain gives programmers easy ways to build AI applications. Chase and Gola’s open-source project has attracted a fleet of developers and inevitably venture capital. Created by founders Harrison Chase and Ankush Gola in October 2022, to date LangChain has raised at least $30 million from Benchmark and Sequoia, and their last round valued LangChain at at least $200 million.

Meta

The social media conglomerate may not be as synonymous with the generative AI revolution as OpenAI, Microsoft, or Google, but the firm’s AI research lab boasts some of the world’s top deep learning talent and its pioneering work on large language models has played a key role behind the scenes in Meta’s own products, from helping to moderate content on Facebook to helping to match advertising recommendations with users on Instagram. Now the company is also playing a critical role in the open-source generative AI world, releasing LLaMA (Large Language Model Meta AI), an open-source language model meant to match many of the capabilities of OpenAI’s ChatGPT and Google’s Bard, for free. Five months later, Meta released open-source Llama 2 with Microsoft, free of charge for commercial use or research. Yann LeCun, chief AI scientist at Meta, is a preeminent AI researcher and one of the “godfathers of AI.” He’s been increasingly vocal in arguing against heavy-handed AI regulation, especially rules that might make it harder for open-souce AI. He has also emerged as a leading critic of the idea that AI could pose an existential risk to humanity, a position that has pitted him against his fellow deep learning godfathers, Geoff Hinton and Yoshua Bengio. In June, Meta announced Voicebox, a generative AI voice model that can produce high-quality text-to-speech with audio samples as short as two seconds long, among other services. Most recently, Meta announced Habitat 3.0, a simulator for AI models that it hopes to use to train socially intelligent AI assistants in the form of physical robots. It has also launched a number of AI chatbots with distinct communication styles licensed from celebrities from Paris Hilton to Snoop Dogg.

Microsoft

While OpenAI deserves the credit for having created ChatGPT, it wouldn’t have happened without billions of dollars in investment from Microsoft. The tech giant has committed a reported $13 billion to OpenAI so far and it has built one of the world’s largest supercomputing clusters to help OpenAI train its ever-larger, more capable AI models. Microsoft’s Bing Chat, a chatbot and search engine, was built with models from OpenAI, and since its debut, users engaged in over a billion chats with the bot and generated more than a billion images with Bing Image Creator, which uses AI to turn user prompts into images. What Bing hasn’t done, however, is move the needle on Microsoft’s search business: Bing remains stuck at about 3% of the global search market, compared to Google’s 91%. But for Microsoft, the more important wins from generative AI have been in its Cloud business. Here, Microsoft’s ability to offer OpenAI’s technology to its Azure cloud customers has helped the tech giant turns in sales and profit growth that has beaten Wall Street expectations, with generative AI accounting for about 3% of the growth in Cloud revenues in the quarter ended in September. Microsoft has also been implementing AI across its core business producitivity software products, from PowerPoint to Outlook, as well as adding products like GitHub Copilot, an AI-powered coding assistant.

Midjourney

What would the Pope look like in a trendy, white puffer jacket? Or Donald Trump getting arrested? Thanks to Midjourney, you don’t have to picture it in your head—you can make it a reality in minutes. The less-than-two-year-old research lab, based in San Francisco, is behind some of the most viral AI-generated photos over the past year as the creator of its eponymous and wildly popular text-to-image generation system. Midjourney lets users create highly photorealistic images based on text prompts. But it’s also at the center of several controversies around the murky new world of AI-generated photos—including criticism over the way fake but realistic-looking photos of Trump and other figures could be used for political disinformation, as well as backlash from artists over the use of copyrighted material to train Midjourney and concerns that it is reducing both the amount of paid commercial illustration and photography work available as well as the amount businesses will pay artists and photographers for imagery. Many photographers were up in arms when a Midjourney-created image took a prestgious photographic prize earlier this year. The lab has also been under fire for its moderation standards, which some have criticized as inconsistent. Founder and CEO David Holz said earlier this year: “We’re taking lots of feedback and ideas from experts and the community and are trying to be really thoughtful.” The research lab has made big strides in the text-to-image generated space in its short existence, and its “goal is to make humans more imaginative, not make imaginative machines,” Holz said last year. Interestingly, the lab has so far eschewed venture funding.

Nvidia

Nvidia may have been founded in 1993, but no company has capitalized the AI boom with the success that the chipmaker has. Nvidia is the reigning monarch of AI hardware. Its graphics processing unit (GPU) chips are essential for the training of most top AI models (Google’s models are the exception; the search giant mostly uses its own chips in its datacenters.) As the essential AI company, Nvidia’s stock has gained an eye-popping 289% year to date as of Nov. 2, 2023. Nvidia’s popular and well-supported CUDA software system, which makes it relatively easy for developers to program the company’s GPUs and its chip performance has enabled it to amass market share while other chipmakers chase its lead. While chips may be what Nvidia is known for, the company has been investing in its AI software for almost two decades, spending $30 billion in R&D in the past decade alone. And the company is increasingly starting to offer its own AI models and AI cloud services directly to enterprise customers, putting it into direct competition with some of its best customers, the giant “hyperscale” cloud providers such as Microsoft Azure. Nvidia launched two large language model cloud services for both AI and biotech that can help developers use LLMs for content creation.

OpenAI

OpenAI rocked the world with the launch of ChatGPT in November of 2022—and then again in mid-November when the abrupt ouster of cofounder Sam Altman captivated the business and tech worlds over an insane weekend of boardroom drama. It’s not remotely clear what the fallout from the OpenAI combustion may eventually be. And, as Fortune has reported, it was the unusual corporate structure that OpenAI was built upon that enabled the power struggle to play out in the first place. Founded in 2015 as a nonprofit (the company has since added a capped-profit arm) by a group of tech entrepreneurs including Elon Musk (who has since broken with the company) and now ex-CEO Altman, OpenAI is among those in the AI space whose explicit goal is the creation of artificial general intelligence (AGI), a single AI model that can perform any economically-valuable intellectual task humans can as well or better than we can. It took only two months for ChatGPT to reportedly garner 100 million monthly active users, making it the fastest-growing consumer application ever at the time. OpenAI’s latest version, GPT-4 Turbo, which users of OpenAI’s paid ChatGPT Plus service and enterprise customers of its API have access to, is the most capable general-purpose large language foundation model yet released. It can do everything from write code to write plays, as well as create images, give you recipes based on a photo of what is in your fridge, and use an increasing number of internet-connected tools. A version of GPT-4 is also integrated with Microsoft’s search engine, Bing. Its massive ambitions have earned OpenAI equally massive funding—including $13 billion from Microsoft alone. But the company’s innovations have also put it under scrutiny, including from the government, over what its technologies could do and what regulations should govern—and control—it. The company is also facing numerous lawsuits for copyright infringement and data privacy leaks. Whatever ends up happening with Altman and the rest of the OpenAI team, you can bet on this, the world will be watching.

Palantir

The giant data mining and software company whose largest clients include many governments, militaries, and intelligence agencies, was established in 2003 with PayPal’s Peter Thiel among its founders. Palantir has been working on AI for a long time; last year, its tech tools were used by Ukrainian forces in the war with Russia. The recent generative AI frenzy has created a surge in demand for the Denver-based company’s tech. In April 2023 the company unveiled its artificial intelligence platform (AIP), which uses AI to analyze data in different real-world scenarios. Earlier this year, CEO and cofounder Alex Karp said AI tools represented an “infinite market.” Palantir’s share price doubled in the first six months of 2023 as a result of booming demand for its platform. The company is optimistic about the coming months, as it forecast a profit for every quarter of the year in May. Despite the massive power and potential of Palantir’s AI tools, Karp has maintained that the tech will continue to remain a “subordinate” to its creator rather than becoming a powerful force on its own. Like many other tech companies, Palantir carried out a series of cost-cutting measures, including laying off about 2% of its workforce and reducing its cloud expenditure.

PathAI

Modern medicine has advanced at a rapid clip in recent decades, but some crucial parts of the job, like pathology, where doctors examine cells to diagnose diseases like cancer, are still up to the sometimes-flawed human eye. That’s where AI can come in handy. Boston-based PathAI uses machine learning and AI algorithms to help pathologists and researchers analyze images of cells more accurately and efficiently, helping them also discover new biomarkers to aid diagnosis and future drug development. The company develops algorithms trained on proprietary, crowd-sourced data from over 450 pathologists. More than 45 pharma and biotech companies, 3,500 providers, and 50 labs are using PathAI’s technology, according to the company. PathAI primarily works with doctors treating cancers, liver diseases, and bowel syndromes. CEO Andy Beck, a board-certified pathologist himself, predicts that in 10 years pathologists are “not going to be counting individual cells like they are today or doing measurements manually. All of that low-level work will be done, and the AI system will provide specific recommendations about, ‘This is the diagnosis, this is the recommended care path,’” he told Fortune. PathAI’s platform is already being used to develop new drugs, which are in all phases of clinical trials, Beck told Fortune. Investors including General Atlantic and D1 Capital Partners also see the promise in PathAI’s technology, giving the startup a total of over $350 million in funding. It recently announced new products including Nash Explore and IBM Explore, which use AI to categorize eight types of cancers and markers that indicate ulcerative colitis, respectively.

Perplexity

The San Francisco–based Perplexity is building a generative AI chat-based search engine that could rival Google search and Microsoft’s Bing. It was founded in 2022 by Aravind Srinivas, Denis Yarats, Johnny Ho, and Andy Konwinski, who have experience in AI and machine-learning-based roles at tech companies. The company reported having 10 million monthly visits and 2 million unique visitors in just February. The company’s interface is more like a chat screen, and Perplexity claims it is far more accurate in its answers and less prone to hallucination than some other chatbot search engines out there. Perplexity launched its platform on Apple’s iOS in March and within six days had hit over 100,000 downloads. What sets Perplexity apart, according to Srinivas, is its ability to balance between ranking search results and using large language models to produce summarized, capsule answers that cites its sources and that also allows users to ask follow-up questions. The company plans to monetize its business by offering paid features. It faces lots of competition in the high-demand AI search space, but Perplexity has set itself apart by catching the attention of AI veterans like Turing Award winner Yann LeCun and Google AI research head Jeff Dean. It has raised over $28 million so far and is in talks with Instacart and Klarna about integrating conversational search into their platforms.

Pinecone

Humans are not all-knowing, but we are able to search through textbooks, online databases, and encyclopedias to find out an almost limitless amount of information. Similarly, when users ask for information not hard coded into an AI model, the model needs to do its own research. This is where Pinecone and vector databases come into play. For every AI application worth its salt, founder and CEO Edo Liberty says, is an accompanying database it can ping to get information on, for example, the current price of Apple’s stock or nonpublic data on a bank’s roster of customers. Pinecone develops the infrastructure for companies big and small, including Microsoft and CVS, to create their own vector databases to give their AI models what it calls “l(fā)ong-term memory.” In its first year of operations after launching in early 2022, Pinecone grew its customer base from zero to 170 and generated more than $2 million in sales, Liberty says. And in April 2023 it raised $100 million at a valuation of $750 million, bringing the total amount of funds the San Francisco–based startup raised to $138 million, according to Crunchbase.

Profluent

Finding the chemical code that can cure a disease is like finding a needle in a haystack, says Profluent CEO Ali Madani. In the same way that large language models allow ChatGPT to predict the correct answer to your question, Madani says similarly-designed AI models might be able to “l(fā)earn the underlying language of nature to go solve the most challenging problems in human health and the environment.” He spent several years researching this question alongside scientists at UCSF, Stanford, and in the industry to test whether AI-designed proteins would be useful. The technology that they invented was able to create functioning proteins, as detailed in a peer-reviewed paper in Nature Biotech. These AI-designed proteins can be used in drug discovery and across other biotech functions, a prospect that inspired Madani to start Profluent. Madani is a solo founder with a team of scientists, technologists, and entrepreneurs across biology and machine learning fields. That team is poised to grow after launching in January 2023 with a $9 million seed round led by Insight Partners. “Even with all the recent AI-driven breakthroughs in protein structure prediction, Profluent’s work stands out,” said Dylan Morris, managing director at Insight Partners.

Replika

“We’re in the worst crisis of loneliness,” says Eugenia Kuyda, the founder and CEO of Replika. Kuyda, a former journalist, hopes to combat loneliness with Replika, her AI-companion startup. Founded in 2017, her company gives users a taste of the dystopian (or utopian, depending on one’s perspective) movie Her, in which actor Joaquin Phoenix falls in love with his AI assistant. Replika users can create their own virtual friends, customize their appearances, and chat with them at length. As of October 2023, the application has about 2 million monthly users and 250,000 paid subscribers. It has raised almost $11 million from private investors, according to Crunchbase. This funding is a pittance compared to that of AI juggernauts like OpenAI. But Replika’s pitch of virtual friendship has attracted substantial media buzz, especially coverage of its users’ propensity to turn their AI friends into AI friends with benefits. In February 2023 the company removed the ability for users to engage in erotic roleplay, but after community outcry, it reversed course and allowed those with accounts created before February 2023 to continue to dirty-talk their chatbots. Replika has also launched Blush, an app specifically designed for users who want to “date” an AI chatbot. Kudya says that just as there was initially a stigma around online dating that eventually faded completely, she thinks today’s stigma around having a romantic relationship with an AI bot will also fade in time.

Runway

Making a movie has historically been a time- and capital-intensive process that a novice videomaker couldn’t dream of successfully embarking on solo, but the founders of startup Runway are changing that. The company, which is known for helping to build popular text-to-image model Stable Diffusion, recently launched the first publicly available text-to-video platform, Gen-2. The company currently offers over 35 tools for AI-powered video editing to production companies, news publications, or individual content creators. Runway also allows creatives like filmmakers and artists to generate entire shots and scenes, and the tech was notably used to edit parts of movies including Everything Everywhere All at Once. Some of its customers include New Balance, CBS, and Vox, according to a spokesperson from the company. In June 2023 Runway raised $141 million in Series C extension funding at a $1.5 billion valuation with participation from Google, Nvidia, and Salesforce Ventures. The company recently released new research detailing ways to reduce bias in models that generate images from text and unveiled Director Mode, which gives users more control over scene generation.

Salesforce

The cloud-based customer relationship management platform has been using AI since 2016 under the umbrella of its AI platform Einstein. To grow its offerings for customers and employees, Salesforce announced that Einstein GPT, launched in March 2023, would integrate with ChatGPT-maker OpenAI. Some key users of Einstein bots include Formula 1, which leverages the tech to offer personalized fan experiences, and Gucci, which has used it for customer-facing aspects of that business. Salesforce also operates a generative AI-focused venture capital arm through which it plans to invest $500 million in the tech. Security of data has been a top priority in Salesforce’s AI expansion endeavors so that large language models don’t accidentally leak customer data. The company emphasizes a “human in the loop” where generative AI is involved to prevent misuse and guard against AI hallucinations that could adversely impact customers. Clara Shih was appointed the head of AI in May 2023, before which she led Salesforce Service Cloud. The company is looking to AI to propel its growth and has introduced a suite of tools that help enterprises tap on the power of generative AI, such as AI Cloud. Benioff expects messaging platform Slack to be a key part of the AI push. Salesforce has also made deals such as the acquisition of California-based Airkit.ai and expanded its partnerships with AWS, Google, and Databricks to further bolster its strategy.

Scale AI

AI automates, but to get to the sophistication of chatbots like ChatGPT requires humans—and a lot of them. While the LLMs behind OpenAI’s ChatGPT or Anthropic’s Claude learn the statistical connections in language on their own, to guide and refine the responses these models will provide through a chatbot interface, companies turn to a process known as reinforcement learning from human feedback (or RLHF) where human evaluators judge whether the model’s answers are useful, helpful, and “safe” (usually meaning not offensive or likely to be used for harm). Then the model is rewarded for producing answers more like those that the human evaluators labelled as good. But all that requires humans. Which is where Scale comes in. Its whole business is around providing the data labels that AI companies need. Often, those labelers work for low wages in the developing world. In Kenya, for example, Scale AI, a Silicon Valley darling, paid workers between $1 and $3 to train AI models, according to The Verge. (A spokesperson said the company adheres to minimum wage law in all counties in which it operates.) Founded by Alexandr Wang in 2016, who was then only 19 years old, Scale is best known as the data maven behind many of the world’s most sophisticated AI models, including those used by a number of self-driving car companies and to support decision-making in defense. The tasks are often simple and monotonous: identify characteristics of retail products or identify objects in an image. While Scale got its start labeling objects in image data for self-driving algorithms, it has now expanded its training to a wide assortment of AI models for customers like Etsy, Instacart, Meta, and, of course, OpenAI. And it’s ridden the AI boom to raise a total of approximately $600 million at a most recent valuation of $7.3 billion. CTO Vijay Karunamurthy said, however, that Scale, which also builds its own AI algorithms, is looking to go beyond finding laypeople to more curated experts, like an authority in ancient Aramaic, to help train models: “Expert feedback is incredibly valuable to help the model structure its thinking.”

Snorkel AI

“Data is often overlooked,” says Alexander Ratner, cofounder and CEO of Snorkel AI. “It’s often treated like an upstream janitorial process.” Despite the lack of glamour in wading through the statistical muck, Ratner’s startup, which began as a research project in the Stanford AI Lab in 2015, has attracted enough attention from private investors to raise $135 million—with a $1 billion valuation as of its last funding round in August 2021. And its customers include brand names like Wayfair, BNY Mellon, and Memorial Sloan Kettering. At its core, Snorkel AI uses artificial intelligence to help train artificial intelligence. Every AI model learns from a dataset, which can often measure in the terabytes. To shape these datasets, Snorkel uses its own proprietary AI algorithms as well as humans. Experts like journalists, network technicians, or doctors teach Snorkel’s models how to label, clean up, and shape data. Through multiple rounds, a doctor, for example, will coach AI in how to better classify ultrasounds. Ratner says this speeds up the labeling and curating of data, in a process 10 to 100 times as fast as conventional techniques. “That inglorious messy janitorial data work [has been] our whole pitch over the last nine years,” he notes.

Stability AI

Stability AI is best known for its efforts in helping create the ultra-popular text-to-image generation system Stable Diffusion—where users can input a prompt and create an AI image of anything they want—but the startup is working on a host of other AI projects that are open models, meaning anyone can access them. This spring, Stability released two language models, StableLM and Stable Vicuna, as well as two additional imaging models, according to the company. It has also created a text-to-audio model called Stable Audio that it released in September. Stability has been an early and vocal champion of open-source AI, where people can access the entire model, all of its code and weights, as well as all of its outputs, for free and with almost no restrictions. Some big investors have gotten on board with the startup’s creed, as Stability has raised over $110 million, per PitchBook data, from the likes of Coatue Management and Lightspeed Venture Partners. Over 200,000 creators, developers, and researchers, as well as seven research hubs, use Stability’s products, according to the company. However, Stability and its founder Emad Mostaque have also recently come under scrutiny: Mostaque reportedly has a history of exaggeration, and a Forbes investigation found that several of his assertions about his own background and Stability’s customers were either false or inflated. Numerous senior executives and AI experts have reportedly left the company this year. However according to the company, overall headcount is up, and they increased their revenue base more than 10x this year. And the company got a boost in early November as Mostaque posted on X that “We closed strategic funding ourselves last month (announcements soon).” Bloomberg later reported that Stability had receieved a $50 million round of debt financing in a round led by Intel. But it also reported that both Coatue Management and Lightspeed had declined to provide the company further financing and given up theirs seats on the company’s board following disagreements with Mostaque over the company’s management and direction.

Sudowrite

“This might be controversial, but I don’t think everyday users of generative AI should use Sudowrite,” says Rishi Taparia, cofounder of Garuda Ventures, one of Sudowrite’s investors. Taparia’s sentiments, though, are more a testament to Sudowrite’s focus on serving professional writers rather than its limited market size. Sudowrite bills itself as the AI platform for creative writing. It has settings to help with screenplays and novels, and can perform specialized tasks like reviewing plot pacing and rewriting dialogue. The layout supplements generative AI’s usual words-on-a-screen presentation with visual elements like pictures of characters and an interactive timeline for outlines.

Fittingly, Sudowrite’s cofounders, Amit Gupta and James Yu, met in a writing group when they both took time off work after selling their previous companies. So far, the platform has 12,000 paying users, according to Gupta, with subscriptions ranging from $10 to $100 a month. Sudowrite has raised only $3 million to date, with no plans to raise additional funds at the moment, Gupta tells Fortune.

Synthesia

The AI video creation platform Synthesia has catapulted to unicorn status amid the AI craze. The company was founded in 2017 by a group of four entrepreneurs with experience at UCL, Stanford, TUM, and Cambridge; it uses AI to create video avatars primarily for instructional videos, saving enterprise clients time and money on production costs. As of June 2023 it has generated more than 12 million videos across 50,000 businesses, including almost half of the Fortune 100, which use Synthesia to create product marketing and educational videos in a matter of minutes. With 456% growth year over year, it is no wonder that it raised $90 million in a Series C round led by Accel with investment from Nvidia’s venture capital arm. “One of the most important philosophies of Synthesia is utility over novelty. And while we’ve seen a bump the last six months because of all the hype, I think this round and the interest of investors is very much a testament to the absolutely amazing business fundamentals that sit under that,” CEO and cofounder Victor Riparbelli told Bloomberg. Synthesia raised $90 million in Series C funding in June led by Nvidia’s NVentures at a $1 billion valuation. Controversially, some of the highly-realistic avatars the company has created, particularly a virtual news anchor called Jason as well as avatars called Darren and Gary, have been used for political disinformation campaigns in Mali, Burkina Faso, Venezuela, as well as advertising a cryptocurrency scam in California, according to a story in Wired. Riparbelli told Wired that the company has since made changes to try to prevent its avatars from being used in misinformation campaigns—including blocking the news-related scripts from its consumer-facing accounts and employing content moderators to review the scripts being fed to its avatars.

Together

AI needs villages-worth of computational power, and Amazon Web Services, Google Cloud, and Microsoft Azure are the cloud computing titans of choice. To challenge their dominance, Together “brings together” the little guys to provide AI researchers and developers comparable levels of computing power, which can be five times as cheap as what the giants of cloud computing charge, according to cofounder and CEO Vipul Ved Prakash. The startup, which is led by Stanford professors and tech industry veterans, announced $20 million in seed funding in May 2023. Together outsources a developer’s computational needs to alternative data centers—even former Bitcoin miners. And it also offers a comprehensive platform for AI development for both general developers as well as those who want to build their own models from scratch. “There’s already a fair bit of concentration with OpenAI and Google,” Prakash said. “So I think there is value in our more decentralized, less locked-in ecosystem.”

Tome

Imagine PowerPoint—but with an AI twist. That’s what Tome, a startup launched in September 2022, is pitching to investors and customers, and it’s already attracted more than 10 million users as of July 2023 and raised more than $81 million at a most recent valuation of $300 million. At its most basic, Tome, founded by two former Meta managers, uses large models like Stable Diffusion, ChatGPT, and even its own proprietary AI to generate custom presentations and imagery for users. But Keith Peiris, cofounder and CEO of the startup, says his vision goes beyond slideshow generation. “It’s sort of this wet clay that can become anything,” he said of Tome’s product. Founders can not only build a pitch deck to hawk their newest AI-powered tool, Peiris notes, they can build travel guides, résumés, or small websites. In the past, Tome relied on the vanilla text and images generated from its AI models, but a spokesperson said that, going forward, Tome is increasingly integrating outside data—like files in a user’s Google account—to further refine its AI-generated slideshows.

You.com

Before the recent AI craze took the world by storm, one company had already put AI chat search to the test. Cue: You.com. Its novel search engine uses generative AI for web search and content and image creation with a focus on user data privacy. You was founded in 2020 by Richard Socher, who used to be chief scientist at Salesforce with $20 million in seed funding led by Salesforce CEO Marc Benioff’s Time Ventures. It subsequently received $25 million in Series A funding led by Radical Ventures and further investment from Salesforce Ventures. The company’s domain had been unused and owned by Benioff since 1996. You.com‘s search bar appears similar to Google’s—but that’s about as far as the similarities go. Socher has previously called Google’s approach to privacy “pretty terrible.” The company has several other competitors in the search and privacy space such as DuckDuckGo, but You’s combination of data privacy and generative AI features sets it apart. In June 2023, the company introduced a paid subscription called YouPro to monetize its product, allowing unlimited access to users of its AI-powered chat and other generative AI features along with an ad-free experience for $9.99 a month. In September it launched an AI-enabled search function on WhatsApp, bringing its conversational search capabilities to one of the most widely used messaging platforms globally.

財富中文網(wǎng)所刊載內(nèi)容之知識產(chǎn)權(quán)為財富媒體知識產(chǎn)權(quán)有限公司及/或相關(guān)權(quán)利人專屬所有或持有。未經(jīng)許可,禁止進行轉(zhuǎn)載、摘編、復(fù)制及建立鏡像等任何使用。
0條Plus
精彩評論
評論

撰寫或查看更多評論

請打開財富Plus APP

前往打開

            主站蜘蛛池模板: 千阳县| 云霄县| 漳浦县| 宁武县| 敖汉旗| 新沂市| 伊川县| 固始县| 灵宝市| 贵定县| 大英县| 泰安市| 隆尧县| 班玛县| 宽城| 金乡县| 甘南县| 类乌齐县| 巢湖市| 鹰潭市| 闽侯县| 高青县| 嘉祥县| 惠东县| 桐梓县| 仁怀市| 茌平县| 辛集市| 西丰县| 奎屯市| 莱西市| 津南区| 普宁市| 鹤岗市| 德保县| 龙胜| 晋城| 宁城县| 枞阳县| 新巴尔虎右旗| 闻喜县|