精品国产_亚洲人成在线高清,国产精品成人久久久久,国语自产偷拍精品视频偷拍

首頁 500強 活動 榜單 商業 科技 領導力 專題 品牌中心
雜志訂閱

這13位人工智能創新者正在決定這項技術將如何改變你的生活

ANDREA GUZMAN
2023-06-16

人工智能正以超出所有人預期的速度改變商界和社會。

文本設置
小號
默認
大號
Plus(0條)

從左至右為:拉姆曼·喬杜里(Rummann Chowdhury)、阿里·戈德西(Ali Ghodsi)和李飛飛(Fei-Fei Li)。圖片來源:COURTESY OF RUMMANN CHOWDHURY; DATABRICKS; MATT WINKELMEYER—GETTY IMAGES FOR WIRED25

就像一艘滿載外星人的宇宙飛船降落在地球上一樣,人工智能技術橫空出世,瞬間改變了一切。

從人工智能生成音樂(能夠惟妙惟肖地模仿你最喜歡的歌手)到虛擬戀人,人工智能技術令人著迷,卻也令人害怕,同時越來越容易獲得。

各大企業迅速向這項技術注入了資金。除了微軟(Microsoft)斥130億美元巨資投資ChatGPT開發商OpenAI之外,Anthropic、Cohere、Adept AI、Character.AI和Runway等初創公司在最近幾個月里也分別籌集了數億美元。

正如許多科技企業,人工智能創新項目負責人與技術本身一樣,都是故事的核心。今天的人工智能創新者并不像科技行業的名流那樣為人所熟知,但由于他們的工作,這些計算機科學家和技術專家的影響力正迅速擴大。

鑒于他們的工作對社會影響深遠,而且可能帶來潛在風險,這些人工智能創新者中的許多人強烈堅持自己的觀點(涉及該技術的未來、力量及其危險性),而他們的觀點往往互相沖突。

通過了解他們的工作和觀點,《財富》雜志對部分制定人工智能議程的關鍵人物進行了調查。有些人在大公司工作,有些人在初創公司工作,有些人在學術界工作;一些人已經在人工智能的特定分支領域耕耘多年,而另一些人則是新近加入的。如果說他們有什么共同點的話,那就是他們能力非凡,能夠改變這項強大的技術影響世界的方式。以下介紹當今最重要的13位人工智能創新者,排名不分先后。

丹妮拉·阿莫迪(Daniela Amodei),Anthropic聯合創始人

“鑒于人工智能的潛在影響范圍,它在很大程度上仍不受監管,這讓我有點震驚。”

圖片來源:COURTESY OF ANTHROPIC

據報道,丹妮拉·阿莫迪和她的兄長達里奧于2020年年底辭去了在OpenAI的工作,共同創立了Anthropic,據稱是擔心OpenAI與微軟的合作會增加壓力,導致OpenAI以犧牲安全協議為代價快速發布產品。

該公司的聊天機器人克勞德Claude與OpenAI的ChatGPT類似,但采用了一種被稱為“憲法人工智能”(constitutional AI)的技術進行訓練。據該公司稱,該技術設定了一些原則,比如選擇“種族主義和性別歧視傾向最不嚴重”的回答,并鼓勵人們堅持生命至上和追求自由。這種方法是基于35歲的阿莫迪所說的Anthropic人工智能研究的3H框架(helpful, honest, and harmless三詞的首字母縮寫):有益、真誠和無害。

“鑒于人工智能的潛在影響范圍,它在很大程度上仍不受監管,這讓我有點震驚。”阿莫迪在去年的一次采訪中說。她希望制定相關標準的組織、行業團體和行業協會能夠介入,并就安全模型提供指導。“我們需要所有參與者共同努力,以取得積極成果(這是我們的共同愿望)。”

除了為聊天機器人Claude開發“下一代算法”外,Anthropic一直竭力籌集資金。最近,該公司從谷歌(Google)、賽富時(Salesforce)和Zoom Ventures等支持者那里籌集了4.5億美元(值得注意的是,Anthropic此前籌集的5.8億美元資金是由聲名狼藉的加密貨幣企業家薩姆·班克曼-弗里德的Alameda Research Ventures領投的。Anthropic尚未表示是否會退還這筆資金)。

楊立昆(Yann LeCun),Meta首席人工智能科學家

“即將到來的人工智能系統將增強人類智力,就像機械機器能放大體能一樣。它們不會成為替代品。”

圖片來源:MARLENE AWAAD—BLOOMBERG/GETTY IMAGES

出生于法國的楊立昆在一場即將舉行的辯論預演賽中表示:“關于人工智能引發的末日預言只不過是一種新形式的蒙昧主義。”在這場辯論中,他將與麻省理工學院(MIT)的一名研究人員就人工智能是否會對人類構成生存威脅展開辯論。

62歲的楊立昆直言不諱地表示,人工智能有助于增強人類的智力。他是公認的神經網絡領域的主要專家之一,該領域的研究使得計算機視覺和語音識別取得了突破。他從事被稱為卷積神經網絡的基礎神經網絡設計方面的工作,拓寬了神經網絡視角,使得他與深度學習先驅杰夫里·辛頓和約書亞·本吉奧于2018年共同獲得了有“計算機科學界的諾貝爾獎”之稱的圖靈獎。

毋庸諱言,楊立昆并不是200多名公開信聯署簽名者之一。聯署簽名者最近在公開信中警告稱,人工智能對人類構成了滅絕級風險。

長期擔任紐約大學(New York University)計算機科學教授的楊立昆于2013年加入臉書(現為Meta),目前負責這家市值7000億美元的公司的各類人工智能項目。這并沒有讓他參與辯論的興趣減退,他還會參與人工智能相關的重大辯論,比如人們擔憂該技術將奪走他們的工作。在馬丁·福特2018年出版的《智能建筑師:從構建人工智能的人那里了解人工智能的真相》(Architects of Intelligence: The Truth About AI from the People Building it)一書的問答中,楊立昆對辛頓的一大著名預測提出了異議,例如,辛頓認為由于人工智能的出現,放射科醫生將失去工作,相反,他解釋說這將使放射科醫生有更多時間與病人進行溝通。他接著說,他認為一些活動將變得更加昂貴,比如在餐廳吃飯(服務員端來由人類廚師準備的食物)。他對福特說:“事物的價值將發生變化,在評估價值時,人們更重視人類經驗,而不是實現自動化的事物。”

戴維·欒(David Luan),Adept首席執行官兼聯合創始人

“人工智能的發展速度是驚人的。首先是文本生成,然后是圖像生成,如今是計算機應用。”

圖片來源:COURTESY OF ADEPT

在2022年聯合創立Adept之前,欒曾在一些最重要的人工智能公司工作,包括OpenAI和谷歌(他還曾在Axom公司短暫擔任過人工智能總監,該公司是泰瑟槍和警用隨身攝像機的制造商)。他說,人工智能當前的時刻是他最興奮的時刻。“我們已經進入了人工智能的工業化時代。現在是時候建立工廠了。”欒在今年早些時候的腦谷人工智能峰會(Cerebral Valley A.I. Summit)上說。

Adept的理念是為人們提供“人工智能隊友”,它可以通過幾個簡單的文本命令來執行計算機輔助任務。例如,在電子表格中建立財務模型。今年3月,該公司融資3.5億美元,《福布斯》將其估值定為10億美元以上。

31歲的欒說,他花了很多時間思考人們普遍擔憂的問題:人工智能是否可能取代人類工作,但對于“知識工作者”——像Adept這樣的生成式人工智能工具所關注的客戶——來說,這種擔憂被夸大了。欒在腦谷人工智能峰會上表示:“你不再需要每周花30個小時更新賽富時客戶關系管理平臺記錄,而是每周花1%的時間讓Adept為你做這些事情,而你花99%的時間與客戶交談。”

埃馬德·莫斯塔克(Emad Mostaque),Stability AI首席執行官

“如果我們擁有比自身更有能力,卻無法控制的代理,它們在互聯網上進行互聯,并實現了一定程度的自動化,這意味著什么?”

2022年12月,Stability AI創始人兼首席執行官埃馬德·莫斯塔克出席《財富》雜志人工智能頭腦風暴大會。圖片來源:NICK OTTO FOR FORTUNE

莫斯塔克出生于約旦,但在孟加拉國和英國長大,2005年在牛津大學獲得計算機科學學士學位。據《紐約時報》報道,在2020年創立Stability AI之前,他在對沖基金工作了十多年。在金融業的工作經歷似乎為他創辦Stability AI奠定了良好基礎。據報道,他自己出資創辦了這家公司,后來又獲得了Coatue和光速創投基金(Lightspeed Venture Partners)等投資機構的投資。

該公司幫助創建了文本到圖像的 “穩定擴散” 模型(Stable Diffusion),該模型被用來生成圖像,但在生成過程中極少考慮是否構成知識產權侵權,或人們對暴力內容的擔憂(與其他一些人工智能工具一樣,該產品也因放大種族和性別偏見而受到批評)。對于莫斯塔克來說,首要任務是保持模型開源,而且不設置限制模型生成內容的護欄——盡管為了使Stability的人工智能更具商業吸引力,他后來確實用過濾掉色情圖片的數據集訓練出一版“穩定擴散” 模型。“我們信任用戶,我們也信任社區。”他告訴《紐約時報》。

這種態度(以及指控莫斯塔克夸大了他的部分成就,正如《福布斯》最近詳細報道的那樣)引起了人工智能界其他人士、政府官員和蓋蒂圖片社(Getty Images)等公司的強烈反對,后者在2月份起訴Stability AI侵犯版權,聲稱該公司在未經許可的情況下復制了1200萬張圖像來訓練其人工智能模型。

然而,Stability AI的工具已經成為生成式人工智能領域最受歡迎和最知名的代表之一。現年40歲、工作地在倫敦的莫斯塔克很難被歸類。今年3月,他和其他人簽署了一封公開信,呼吁暫停開發比OpenAI的人工智能聊天機器人GPT-4更高級的人工智能。他對人工智能發展的看法似乎走向兩個極端:他最近評論說,在最糟糕的情況下,人工智能可以控制人類,而在另一個場合,他又表示,人工智能不會對人類感興趣。

“因為我們想象不到有什么事物比我們更有能力,但我們都知道有人比我們更有能力。所以,我個人的看法是,這種情況會像斯嘉麗·約翰遜和杰昆·菲尼克斯主演的電影《她》(Her)那樣:人類有點無聊,所以人工智能會說:‘再見’、‘你有點無聊’。”

李飛飛,斯坦福大學以人為本人工智能研究院聯合主任

“能生在這個歷史時代,投身這項技術,我仍感覺很超現實。”

圖片來源:DAVID PAUL MORRIS—BLOOMBERG/GETTY IMAGES

當李飛飛16歲隨家人從中國移民到美國時,她說自己必須從頭開始學習英語,同時還要努力取得好成績。如今,這位斯坦福大學以人為本人工智能研究院(Institute for Human-Centered AI)聯合主任被認為是人工智能倫理應用方面的領軍人物之一。她寫過《如何制造對人類有益的人工智能》(How to make AI that good for people)等文章,她還是人工智能多元化的倡導者。

她在職業生涯早期建立了ImageNet,這是一個大型數據集,為深度學習和人工智能的發展做出了貢獻。如今,在斯坦福大學,她一直在研究“環境智能”,即利用人工智能來監測家庭和醫院的活動。在去年12月舉行的《財富》雜志人工智能頭腦風暴大會上,她討論了自己的工作,以及偏見為何是需要考慮的關鍵因素。

“我在醫療保健領域做了很多工作。顯而易見的是,如果我們的數據來自特定人群或社會經濟階層,將產生相當深遠的潛在影響。”她說。

據47歲的李飛飛說,斯坦福大學現在對人工智能研究項目進行倫理和社會審查。“這讓我們思考如何設計才能在技術中體現公平、隱私意識,以及人類福祉和尊嚴。”

為了提升人工智能領域的包容性,李飛飛與他人共同創立了一個名為“AI4ALL”的非營利組織,旨在促進人工智能教育多元化發展。

李飛飛職業生涯中的一大爭議事件發生在她在谷歌云(Google Cloud)擔任人工智能/機器學習首席科學家期間:2018年,谷歌簽署了合約,向美國國防部提供人工智能技術支持,這在一些員工中引發爭議。雖然合約不是李飛飛簽署的,但批評者認為她與之有關聯——尤其是她在泄露的電子郵件中關于如何向公眾描述合約的一些評論——與她作為人工智能倫理倡導者相矛盾。

阿里·戈德西(Ali Ghodsi),Databricks首席執行官

“我們應該擁抱人工智能技術,因為它會一直存在。我確實認為它將改變一切,而且產生的影響大都是積極的。”

圖片來源:COURTESY OF DATABRICKS

阿里·戈德西橫跨學術界和商界,他是加州大學伯克利分校(UC Berkeley)的兼職教授,同時也是Databricks的聯合創始人兼首席執行官。這位瑞典-伊朗雙重國籍技術高管的一大核心原則是他對開源開發的承諾。

戈德西在開源數據處理工具Apache Spark上的工作為Databricks奠定了基礎,該公司的估值為380億美元。今年4月,Databricks發布了ChatGPT的開源競爭對手Dolly 2.0,它使用的問答指令集完全是由Databricks的5000名員工之間的互動創建的。這意味著任何公司都可以將Dolly 2.0嵌入到自己的商業產品和服務中,而不受使用上限的限制。

Dolly與其說是可行的產品,不如說是概念證明——該模型容易出錯、產生幻覺和生成有毒的內容。然而,Dolly的重要性在于,它表明人工智能模型可以比支撐OpenAI的ChatGPT或Anthropic的Claude的大型專有語言模型小得多,訓練和運行成本也更低。戈德西為Dolly的自由度和可及性作了辯解。“我們致力于安全而負責任地開發人工智能,通過開放像Dolly這樣的模型供社區合作,我們堅信自己正朝著正確的方向發展(在人工智能行業中)。”

雖然現在生成式人工智能得到了很多關注,但45歲的戈德西認為,其他類型的人工智能,尤其是用于數據分析的人工智能,將對各行業產生深遠影響。今年3月,他對《財富》雜志表示:“我認為這只是一個開始,在人工智能和數據分析能夠發揮的作用方面,我們的研究還有待深入。

山姆·阿爾特曼(Sam Altman),OpenAI首席執行官

“如果有人真的破解了代碼,并研發出超級人工智能(不管你希望如何定義它),可能制定一些全球性規則是合乎情理的。”

圖片來源:ERIC LEE—BLOOMBERG/GETTY IMAGES

出于對谷歌將變得過于強大并控制人工智能的擔憂,阿爾特曼于2015年與埃隆·馬斯克、伊利亞·蘇茨克沃和格雷格·布羅克曼一起創立了OpenAI。

從那時起,OpenAI已經成為人工智能領域最具影響力的公司之一,并成為“生成式人工智能”的領頭羊:該公司的ChatGPT是史上增長最快的應用程序,僅在推出的兩個月內就成功吸引了超過1億月度活躍用戶。DALL-E 2是OpenAI的另一款產品,是最受歡迎的文本到圖像生成器之一,能夠生成具有陰影、明暗和反射景深效果的高分辨率圖像。

雖然他不是人工智能研究人員,也不是計算機科學家,但38歲的阿爾特曼將這些工具視為他與該領域其他人共同完成使命的墊腳石:開發被稱為通用人工智能(AGI)的計算機超級人工智能。他認為,“通用人工智能可能是人類生存的必要條件”,但他表示,在實現這一目標的過程中,他會保持謹慎。

對通用人工智能的追求并沒有讓阿爾特曼對風險視而不見:他是聯名簽署人工智能安全中心(Center for AI safety)關于人工智能對人類威脅的警告的公開信的知名人士之一。在5月中旬舉行的美國參議員聽證會上,阿爾特曼呼吁對人工智能進行監管,他說,應制定規則來鼓勵企業進行安全開發,“同時確保人們能夠獲得這項技術的好處”。(一些批評者猜測,他所呼吁的監管也可能給OpenAI越來越多的開源競爭對手造成障礙。)

據《財富》雜志的杰里米·卡恩介紹,阿爾特曼曾是創業孵化器Y Combinator的總裁,擅長融資。這一訣竅似乎帶來了巨大的回報:OpenAI與微軟達成了130億美元的合作。

雖然馬斯克已辭去OpenAI的董事會職務,而且據報道,他正在成立一個與OpenAI競爭的人工智能實驗室,但阿爾特曼仍然把他視為自己的導師,稱馬斯克教會他如何在“艱苦研發和硬技術”上突破極限。然而,他并不計劃跟隨馬斯克前往火星:“我不想去火星生活,這聽起來很可怕。但我對其他人想去火星生活感到高興。”

瑪格麗特?米切爾(Margaret Mitchell),Hugging Face首席倫理科學家

“人們表示或是認為,‘你不會編程,不懂統計學,你無足輕重。’令人遺憾的是,通常直到我開始談論技術上的事情,人們才會認真對待我。機器學習領域(ML)存在巨大的文化障礙。”

圖片來源:COURTESY OF CLARE MCGREGOR/PARTNERSHIP ON AI

瑪格麗特·米切爾對人工智能偏見的興趣始于在微軟工作期間發生的幾件令人不安的事情。例如,她在去年的一次采訪中回憶說,她處理的數據[用于訓練該公司的圖像注釋軟件“看見圖片”(Seeing AI)人工智能輔助技術]對種族的描述非常詭異。還有一次,她在系統中輸入了爆炸圖像,輸出結果將殘骸描述為美麗的。

她意識到,僅僅讓人工智能系統在基準測試中表現優異,并不能滿足她。她說:“我想從根本上改變我們看待這些問題的方式、處理和分析數據的方式、評估的方式,以及在這些直接流程中遺漏的所有因素。”

這一使命是有個人代價的。米切爾在2021年登上頭條新聞,當時谷歌解雇了她和蒂米特·格布魯(二人是該公司人工智能倫理部門的聯合負責人)。兩人發表了一篇論文,詳述了大型語言模型的風險,包括環境成本以及將種族主義和性別歧視語言納入訓練數據。他們還直言不諱地批評谷歌在促進多樣性和包容性方面做得不夠,并就公司政策與管理層發生沖突。

米切爾和格布魯已經在人工智能倫理領域取得了重大突破,比如與其他多名研究人員就所謂的“模型卡”(model cards)發表了一篇論文(通過提供記錄性能、識別局限性和偏見的方法,鼓勵提高模型的透明度)。

米切爾在離開谷歌后加入機器學習技術開源平臺提供商Hugging Face,她一直在埋頭苦干,深入研究輔助技術和深度學習,并專注于編碼,以幫助建立人工智能倫理研究和包容性招聘等事項的協議。

米切爾說,盡管她的背景是研究人員和科學家,但她對道德的關注讓人們認為她不知道如何編程。米切爾去年在“擁抱臉”的博客上說:“令人遺憾的是,通常直到我開始談論技術上的事情,人們才會認真對待我。”

穆斯塔法?蘇萊曼(Mustafa Suleyman),Inflection AI聯合創始人兼首席執行官

“毫無疑問,未來5到10年,白領階層的許多工作將發生重大變化。”

圖片來源:MARLENE AWAAD—BLOOMBERG/GETTY IMAGES

蘇萊曼被朋友和同事稱為“穆斯”(Moose),他曾在谷歌擔任人工智能產品和人工智能政策副總裁,并與他人共同創立了研究實驗室DeepMind,該實驗室于2014年被谷歌收購。離開谷歌后,蘇萊曼曾在風投公司Greylock工作,并創辦了一家名為Inflection AI的機器學習初創公司。

本月早些時候,Inflection發布了第一款產品,一款名為Pi的聊天機器人,代表“個人智能”。當前版本的機器人可以記住與用戶的對話,并提供有同理心的回答。蘇萊曼說,最終,它將能夠充當個人“辦公室主任”,可以預訂餐廳和處理其他日常任務。

38歲的蘇萊曼對我們將開始使用何種語言與計算機互動熱情高漲。他在《連線》雜志上寫道,總有一天,我們將“與所有設備進行真正流暢的對話式交互”,這將重新定義人機交互。

在蘇萊曼的設想中,未來人工智能將使白領工作發生重大變化,他還發現了人工智能在應對重大挑戰方面的潛力。關于后者,他認為該技術可以降低住房和基礎設施材料的成本,并能夠幫助分配清潔水等資源。盡管如此,他還是主張避免在此過程中造成傷害,他2018年在《經濟學人》中撰文警告說:

“從無人機面部識別的普及到有偏見的預測性警務,風險在于,在技術優勢的競爭中,個人和集體權利被拋在了一邊。”

莎拉?胡克(Sara Hooker),Cohere For AI總監

“我認為真正重要的一點是,我們需要完善追溯體系,尤其是當你考慮到人工智能在生成錯誤信息或可能被用于邪惡目的的文本方面的能力時。”

圖片來源:COURTESY OF COHERE FOR AI

薩拉·胡克曾是谷歌大腦(Google Brain)的研究員,去年她加入了多倫多一家由谷歌大腦校友創立的致力于研究超語言模型的初創公司Cohere,并與前同事團聚。此次重聚保持了一定距離——胡克正在領導一個名為Cohere for AI的非營利性人工智能研究實驗室,該實驗室由Cohere資助,但獨立運作。

Cohere for AI旨在“解決復雜的機器學習問題”。在實踐中,這意味著從發布研究論文以提高大型語言模型的安全性和效率,到啟動實施學者計劃(Scholars Program,該計劃旨在通過從世界各地招募人才,擴大人工智能領域的人才庫)。

入選學者計劃的條件之一是之前沒有發表過關于機器學習的研究論文。

胡克說:“當我談到改善地域代表性時,人們認為這是我們承擔的成本。他們認為我們在犧牲已經取得的進步。但事實完全相反。”胡克更了解相關情況。她在非洲長大,并幫助谷歌在加納成立了研究實驗室。

胡克還力圖提升機器學習模型和算法的準確性和可解釋性。最近在接受《全球新聞網》(Global News)采訪時,胡克分享了她對“模型可追溯性”的看法,即追蹤文本何時由模型而不是人類生成,以及應該如何進行改進。她說:“我認為真正重要的一點是,我們需要完善追溯體系,尤其是當你考慮到人工智能在生成錯誤信息或可能被用于邪惡目的的文本方面的能力時。”

由于Cohere最近從英偉達(Nvidia)、甲骨文(Oracle)和Salesforce Ventures那里籌集了2.7億美元的資金,胡克的非營利實驗室與一家擁有知名支持者的初創公司強強聯手。

拉姆曼·喬杜里(Rummann Chowdhury),Parity Consulting科學家,哈佛大學伯克曼·克萊因中心負責任的人工智能研究員

“很少有人提出這樣的基本問題:人工智能本身應該存在嗎?”

圖片來源:COURTESY OF RUMMAN CHOWDHURY

喬杜里在人工智能領域的職業生涯始于埃森哲(Accenture)負責任人工智能部門的負責人,她負責設計一種算法工具,用于識別和減少人工智能系統的偏見。她離職后創立了一家名為Parity AI的算法審計公司,該公司后來被推特(Twitter)收購。在那里,她領導了機器學習倫理、透明度和問責團隊(這是一個由研究人員和工程師組成的團隊,致力于減輕社交平臺上算法帶來的危害),她說,在埃隆·馬斯克收購推特后,這項工作變得很有挑戰性。

在8月舉行的DEF CON 31網絡安全大會上,一群頂級人工智能開發者得到白宮的支持(她在其中起到了帶頭作用),將舉辦一場生成式人工智能“紅隊”測試活動,旨在通過評估Anthropic、谷歌、Hugging Face、OpenAI等公司的模型的異常和局限性來提高安全性。

作為監管方面的另一位人工智能專家,43歲的喬杜里最近在《連線》雜志上寫道,應該建立生成式人工智能全球管理機構。她以臉書的監督委員會為例,說明該組織應如何組建。該委員會是一個跨學科的全球組織,專注于問責制。

喬杜里寫道:“像這樣的組織應該像國際原子能機構(IAEA)一樣,持續通過專家咨詢和合作來鞏固其地位,而不是為其他從事全職工作的人提供副業。像臉書監督委員會一樣,它應該接受來自行業的咨詢意見和指導,但也有能力獨立做出有約束力的決定,而各大公司必須遵守這些決定。”

她還推動在產品開發過程中進行她所謂的綜合偏見評估和審計,這將允許對已經研發出的事物進行檢查,但也可以在早期階段就建立相關機制,以決定某些事物是否應該通過創意階段的評估而走向下一階段。

“很少有人提出這樣的基本問題:人工智能本身應該存在嗎?”她在一次關于負責任的人工智能的小組討論中說。

克里斯托瓦爾·巴倫蘇埃拉(Cristóbal Valenzuela),Runway ML聯合創始人兼首席執行官

“生成藝術的歷史并不是始于近期。在最近的人工智能熱潮之外,在藝術創作過程中引入自主系統的想法已經存在了幾十年。不同的是,現在我們正在進入人工合成時代。”

圖片來源:COURTESY OF RUNWAY

巴倫蘇埃拉通過藝術家兼程序員吉恩·科根的作品了解了神經網絡后,進入了人工智能領域。他對人工智能如此著迷,以至于離開智利的家,成為紐約大學Tisch互動電信項目的一名研究員。

當時他致力于讓藝術家能夠使用機器學習模型,正是在那里,他萌生了創辦Runway的想法。他在接受云計算公司Paperspace采訪時表示:“我開始圍繞這個問題進行頭腦風暴,然后我意識到,‘模特表演平臺’已經有了一個名字:伸展臺。”

雖然許多藝術家已經接受了人工智能,使用像Runway這樣的工具在電影中制作視覺效果或照片,但33歲的巴倫蘇埃拉希望更多的藝術家能擁抱人工智能。

因此,該公司幫助開發了文本到圖像的 “穩定擴散”模型。它還憑借其人工智能視頻編輯模型Gen-1取得了驚人成就,該模型可以改進用戶提供的現有視頻。Gen-2于今年春天推出,為用戶提供了從文本生成視頻的機會。考慮到像Weezer這樣的娛樂公司利用Runway的模型為搖滾樂隊制作巡回宣傳視頻,另一位藝術家使用Runway的模型制作了一部短片,像Runway這樣的工具因有可能改變好萊塢的電影制作方式而引發熱潮。

在與麻省理工學院的一次談話中,他說該公司正在努力幫助藝術家找到他們作品的用例,并向他們保證他們的工作不會被奪走。他還認為,盡管我們沒有意識到,但在許多情況下,我們已經在使用人工智能進行藝術創作,因為用iPhone拍攝的一張照片可能涉及利用多個神經網絡來優化圖像。

“這只是另一種技術,它將幫助你更好地進行創作,更好地表達想法。”他說。

丹米斯·哈撒比斯(Demis Hassabis),谷歌DeepMind首席執行官

“在DeepMind,我們與其他團隊有很大不同,因為我們專注于實現通用人工智能這一登月計劃目標。我們圍繞一個長期路線圖進行籌備(即我們基于神經科學的論文,其中討論了什么是智能,以及達到目標需要完成哪些工作)。”

圖片來源:COURTESY OF GOOGLE DEEPMIND

哈薩比斯擁有倫敦大學學院(University College London)的認知神經科學博士學位,十多年前,他與他人共同創立了神經網絡初創公司DeepMind,引起了轟動。該公司旨在建立強大的計算機網絡,模仿人類大腦的工作方式(于2014年被谷歌收購)。今年4月,在這家互聯網巨頭的所有人工智能團隊進行重組后,哈薩比斯接管了谷歌的整體人工智能工作。

哈薩比斯說,他對國際象棋的熱愛使他進入了編程領域。這位前國際象棋神童甚至用國際象棋錦標賽的獎金買了他的第一臺電腦。現在,他將象棋比賽要求的解決問題和規劃能力以及他的神經科學背景運用到人工智能工作中,他相信人工智能將是“對人類最有益的事情”。

他認為,通用人工智能可能在十年內實現,并將DeepMind描述為受神經科學啟發的人工智能,是解決有關大腦復雜問題的最佳途徑之一。他告訴福特:“我們可以開始揭開某些深奧的大腦之謎,比如意識、創造力和做夢的本質。”當談到機器意識是否可能實現時,他說他對此持開放態度,但認為“結果很可能是,生物系統有一些特殊的東西”是機器無法比擬的。

2016年,DeepMind的人工智能系統AlphaGo在一場5局3勝制的比賽中擊敗了世界頂級人類棋手李世石(Lee Sedol)。有2億多人在線觀看了這場比賽。(在圍棋比賽中,雙方棋手將棋子放在19路乘19路的棋盤上進行比賽。)李世石敗給AlphaGo尤其令人震驚,因為專家們說,人們料想這樣的結果在未來十年內都不會出現。

這樣的時刻讓DeepMind成為了通用人工智能的領軍人物。但并非所有游戲都是如此。AlphaFold 2人工智能系統(DeepMind是該系統的幕后推手)預測了幾乎所有已知蛋白質的三維結構。DeepMind已經在一個公共數據庫中提供了這些預測結果。這一發現可能會加速藥物研發,哈薩比斯和高級研究科學家約翰·江珀(John Jumper)也因此贏得了300萬美元的生命科學突破獎。哈薩比斯還與他人共同創立并經營著一家Alphabet旗下的新公司Isomorphic Labs,致力于利用人工智能助力藥物研發。(財富中文網)

譯者:中慧言-王芳

就像一艘滿載外星人的宇宙飛船降落在地球上一樣,人工智能技術橫空出世,瞬間改變了一切。

從人工智能生成音樂(能夠惟妙惟肖地模仿你最喜歡的歌手)到虛擬戀人,人工智能技術令人著迷,卻也令人害怕,同時越來越容易獲得。

各大企業迅速向這項技術注入了資金。除了微軟(Microsoft)斥130億美元巨資投資ChatGPT開發商OpenAI之外,Anthropic、Cohere、Adept AI、Character.AI和Runway等初創公司在最近幾個月里也分別籌集了數億美元。

正如許多科技企業,人工智能創新項目負責人與技術本身一樣,都是故事的核心。今天的人工智能創新者并不像科技行業的名流那樣為人所熟知,但由于他們的工作,這些計算機科學家和技術專家的影響力正迅速擴大。

鑒于他們的工作對社會影響深遠,而且可能帶來潛在風險,這些人工智能創新者中的許多人強烈堅持自己的觀點(涉及該技術的未來、力量及其危險性),而他們的觀點往往互相沖突。

通過了解他們的工作和觀點,《財富》雜志對部分制定人工智能議程的關鍵人物進行了調查。有些人在大公司工作,有些人在初創公司工作,有些人在學術界工作;一些人已經在人工智能的特定分支領域耕耘多年,而另一些人則是新近加入的。如果說他們有什么共同點的話,那就是他們能力非凡,能夠改變這項強大的技術影響世界的方式。以下介紹當今最重要的13位人工智能創新者,排名不分先后。

丹妮拉·阿莫迪(Daniela Amodei),Anthropic聯合創始人

“鑒于人工智能的潛在影響范圍,它在很大程度上仍不受監管,這讓我有點震驚。”

據報道,丹妮拉·阿莫迪和她的兄長達里奧于2020年年底辭去了在OpenAI的工作,共同創立了Anthropic,據稱是擔心OpenAI與微軟的合作會增加壓力,導致OpenAI以犧牲安全協議為代價快速發布產品。

該公司的聊天機器人克勞德Claude與OpenAI的ChatGPT類似,但采用了一種被稱為“憲法人工智能”(constitutional AI)的技術進行訓練。據該公司稱,該技術設定了一些原則,比如選擇“種族主義和性別歧視傾向最不嚴重”的回答,并鼓勵人們堅持生命至上和追求自由。這種方法是基于35歲的阿莫迪所說的Anthropic人工智能研究的3H框架(helpful, honest, and harmless三詞的首字母縮寫):有益、真誠和無害。

“鑒于人工智能的潛在影響范圍,它在很大程度上仍不受監管,這讓我有點震驚。”阿莫迪在去年的一次采訪中說。她希望制定相關標準的組織、行業團體和行業協會能夠介入,并就安全模型提供指導。“我們需要所有參與者共同努力,以取得積極成果(這是我們的共同愿望)。”

除了為聊天機器人Claude開發“下一代算法”外,Anthropic一直竭力籌集資金。最近,該公司從谷歌(Google)、賽富時(Salesforce)和Zoom Ventures等支持者那里籌集了4.5億美元(值得注意的是,Anthropic此前籌集的5.8億美元資金是由聲名狼藉的加密貨幣企業家薩姆·班克曼-弗里德的Alameda Research Ventures領投的。Anthropic尚未表示是否會退還這筆資金)。

楊立昆(Yann LeCun),Meta首席人工智能科學家

“即將到來的人工智能系統將增強人類智力,就像機械機器能放大體能一樣。它們不會成為替代品。”

出生于法國的楊立昆在一場即將舉行的辯論預演賽中表示:“關于人工智能引發的末日預言只不過是一種新形式的蒙昧主義。”在這場辯論中,他將與麻省理工學院(MIT)的一名研究人員就人工智能是否會對人類構成生存威脅展開辯論。

62歲的楊立昆直言不諱地表示,人工智能有助于增強人類的智力。他是公認的神經網絡領域的主要專家之一,該領域的研究使得計算機視覺和語音識別取得了突破。他從事被稱為卷積神經網絡的基礎神經網絡設計方面的工作,拓寬了神經網絡視角,使得他與深度學習先驅杰夫里·辛頓和約書亞·本吉奧于2018年共同獲得了有“計算機科學界的諾貝爾獎”之稱的圖靈獎。

毋庸諱言,楊立昆并不是200多名公開信聯署簽名者之一。聯署簽名者最近在公開信中警告稱,人工智能對人類構成了滅絕級風險。

長期擔任紐約大學(New York University)計算機科學教授的楊立昆于2013年加入臉書(現為Meta),目前負責這家市值7000億美元的公司的各類人工智能項目。這并沒有讓他參與辯論的興趣減退,他還會參與人工智能相關的重大辯論,比如人們擔憂該技術將奪走他們的工作。在馬丁·福特2018年出版的《智能建筑師:從構建人工智能的人那里了解人工智能的真相》(Architects of Intelligence: The Truth About AI from the People Building it)一書的問答中,楊立昆對辛頓的一大著名預測提出了異議,例如,辛頓認為由于人工智能的出現,放射科醫生將失去工作,相反,他解釋說這將使放射科醫生有更多時間與病人進行溝通。他接著說,他認為一些活動將變得更加昂貴,比如在餐廳吃飯(服務員端來由人類廚師準備的食物)。他對福特說:“事物的價值將發生變化,在評估價值時,人們更重視人類經驗,而不是實現自動化的事物。”

戴維·欒(David Luan),Adept首席執行官兼聯合創始人

“人工智能的發展速度是驚人的。首先是文本生成,然后是圖像生成,如今是計算機應用。”

在2022年聯合創立Adept之前,欒曾在一些最重要的人工智能公司工作,包括OpenAI和谷歌(他還曾在Axom公司短暫擔任過人工智能總監,該公司是泰瑟槍和警用隨身攝像機的制造商)。他說,人工智能當前的時刻是他最興奮的時刻。“我們已經進入了人工智能的工業化時代。現在是時候建立工廠了。”欒在今年早些時候的腦谷人工智能峰會(Cerebral Valley A.I. Summit)上說。

Adept的理念是為人們提供“人工智能隊友”,它可以通過幾個簡單的文本命令來執行計算機輔助任務。例如,在電子表格中建立財務模型。今年3月,該公司融資3.5億美元,《福布斯》將其估值定為10億美元以上。

31歲的欒說,他花了很多時間思考人們普遍擔憂的問題:人工智能是否可能取代人類工作,但對于“知識工作者”——像Adept這樣的生成式人工智能工具所關注的客戶——來說,這種擔憂被夸大了。欒在腦谷人工智能峰會上表示:“你不再需要每周花30個小時更新賽富時客戶關系管理平臺記錄,而是每周花1%的時間讓Adept為你做這些事情,而你花99%的時間與客戶交談。”

埃馬德·莫斯塔克(Emad Mostaque),Stability AI首席執行官

“如果我們擁有比自身更有能力,卻無法控制的代理,它們在互聯網上進行互聯,并實現了一定程度的自動化,這意味著什么?”

莫斯塔克出生于約旦,但在孟加拉國和英國長大,2005年在牛津大學獲得計算機科學學士學位。據《紐約時報》報道,在2020年創立Stability AI之前,他在對沖基金工作了十多年。在金融業的工作經歷似乎為他創辦Stability AI奠定了良好基礎。據報道,他自己出資創辦了這家公司,后來又獲得了Coatue和光速創投基金(Lightspeed Venture Partners)等投資機構的投資。

該公司幫助創建了文本到圖像的 “穩定擴散” 模型(Stable Diffusion),該模型被用來生成圖像,但在生成過程中極少考慮是否構成知識產權侵權,或人們對暴力內容的擔憂(與其他一些人工智能工具一樣,該產品也因放大種族和性別偏見而受到批評)。對于莫斯塔克來說,首要任務是保持模型開源,而且不設置限制模型生成內容的護欄——盡管為了使Stability的人工智能更具商業吸引力,他后來確實用過濾掉色情圖片的數據集訓練出一版“穩定擴散” 模型。“我們信任用戶,我們也信任社區。”他告訴《紐約時報》。

這種態度(以及指控莫斯塔克夸大了他的部分成就,正如《福布斯》最近詳細報道的那樣)引起了人工智能界其他人士、政府官員和蓋蒂圖片社(Getty Images)等公司的強烈反對,后者在2月份起訴Stability AI侵犯版權,聲稱該公司在未經許可的情況下復制了1200萬張圖像來訓練其人工智能模型。

然而,Stability AI的工具已經成為生成式人工智能領域最受歡迎和最知名的代表之一。現年40歲、工作地在倫敦的莫斯塔克很難被歸類。今年3月,他和其他人簽署了一封公開信,呼吁暫停開發比OpenAI的人工智能聊天機器人GPT-4更高級的人工智能。他對人工智能發展的看法似乎走向兩個極端:他最近評論說,在最糟糕的情況下,人工智能可以控制人類,而在另一個場合,他又表示,人工智能不會對人類感興趣。

“因為我們想象不到有什么事物比我們更有能力,但我們都知道有人比我們更有能力。所以,我個人的看法是,這種情況會像斯嘉麗·約翰遜和杰昆·菲尼克斯主演的電影《她》(Her)那樣:人類有點無聊,所以人工智能會說:‘再見’、‘你有點無聊’。”

李飛飛,斯坦福大學以人為本人工智能研究院聯合主任

“能生在這個歷史時代,投身這項技術,我仍感覺很超現實。”

當李飛飛16歲隨家人從中國移民到美國時,她說自己必須從頭開始學習英語,同時還要努力取得好成績。如今,這位斯坦福大學以人為本人工智能研究院(Institute for Human-Centered AI)聯合主任被認為是人工智能倫理應用方面的領軍人物之一。她寫過《如何制造對人類有益的人工智能》(How to make AI that good for people)等文章,她還是人工智能多元化的倡導者。

她在職業生涯早期建立了ImageNet,這是一個大型數據集,為深度學習和人工智能的發展做出了貢獻。如今,在斯坦福大學,她一直在研究“環境智能”,即利用人工智能來監測家庭和醫院的活動。在去年12月舉行的《財富》雜志人工智能頭腦風暴大會上,她討論了自己的工作,以及偏見為何是需要考慮的關鍵因素。

“我在醫療保健領域做了很多工作。顯而易見的是,如果我們的數據來自特定人群或社會經濟階層,將產生相當深遠的潛在影響。”她說。

據47歲的李飛飛說,斯坦福大學現在對人工智能研究項目進行倫理和社會審查。“這讓我們思考如何設計才能在技術中體現公平、隱私意識,以及人類福祉和尊嚴。”

為了提升人工智能領域的包容性,李飛飛與他人共同創立了一個名為“AI4ALL”的非營利組織,旨在促進人工智能教育多元化發展。

李飛飛職業生涯中的一大爭議事件發生在她在谷歌云(Google Cloud)擔任人工智能/機器學習首席科學家期間:2018年,谷歌簽署了合約,向美國國防部提供人工智能技術支持,這在一些員工中引發爭議。雖然合約不是李飛飛簽署的,但批評者認為她與之有關聯——尤其是她在泄露的電子郵件中關于如何向公眾描述合約的一些評論——與她作為人工智能倫理倡導者相矛盾。

阿里·戈德西(Ali Ghodsi),Databricks首席執行官

“我們應該擁抱人工智能技術,因為它會一直存在。我確實認為它將改變一切,而且產生的影響大都是積極的。”

阿里·戈德西橫跨學術界和商界,他是加州大學伯克利分校(UC Berkeley)的兼職教授,同時也是Databricks的聯合創始人兼首席執行官。這位瑞典-伊朗雙重國籍技術高管的一大核心原則是他對開源開發的承諾。

戈德西在開源數據處理工具Apache Spark上的工作為Databricks奠定了基礎,該公司的估值為380億美元。今年4月,Databricks發布了ChatGPT的開源競爭對手Dolly 2.0,它使用的問答指令集完全是由Databricks的5000名員工之間的互動創建的。這意味著任何公司都可以將Dolly 2.0嵌入到自己的商業產品和服務中,而不受使用上限的限制。

Dolly與其說是可行的產品,不如說是概念證明——該模型容易出錯、產生幻覺和生成有毒的內容。然而,Dolly的重要性在于,它表明人工智能模型可以比支撐OpenAI的ChatGPT或Anthropic的Claude的大型專有語言模型小得多,訓練和運行成本也更低。戈德西為Dolly的自由度和可及性作了辯解。“我們致力于安全而負責任地開發人工智能,通過開放像Dolly這樣的模型供社區合作,我們堅信自己正朝著正確的方向發展(在人工智能行業中)。”

雖然現在生成式人工智能得到了很多關注,但45歲的戈德西認為,其他類型的人工智能,尤其是用于數據分析的人工智能,將對各行業產生深遠影響。今年3月,他對《財富》雜志表示:“我認為這只是一個開始,在人工智能和數據分析能夠發揮的作用方面,我們的研究還有待深入。

山姆·阿爾特曼(Sam Altman),OpenAI首席執行官

“如果有人真的破解了代碼,并研發出超級人工智能(不管你希望如何定義它),可能制定一些全球性規則是合乎情理的。”

出于對谷歌將變得過于強大并控制人工智能的擔憂,阿爾特曼于2015年與埃隆·馬斯克、伊利亞·蘇茨克沃和格雷格·布羅克曼一起創立了OpenAI。

從那時起,OpenAI已經成為人工智能領域最具影響力的公司之一,并成為“生成式人工智能”的領頭羊:該公司的ChatGPT是史上增長最快的應用程序,僅在推出的兩個月內就成功吸引了超過1億月度活躍用戶。DALL-E 2是OpenAI的另一款產品,是最受歡迎的文本到圖像生成器之一,能夠生成具有陰影、明暗和反射景深效果的高分辨率圖像。

雖然他不是人工智能研究人員,也不是計算機科學家,但38歲的阿爾特曼將這些工具視為他與該領域其他人共同完成使命的墊腳石:開發被稱為通用人工智能(AGI)的計算機超級人工智能。他認為,“通用人工智能可能是人類生存的必要條件”,但他表示,在實現這一目標的過程中,他會保持謹慎。

對通用人工智能的追求并沒有讓阿爾特曼對風險視而不見:他是聯名簽署人工智能安全中心(Center for AI safety)關于人工智能對人類威脅的警告的公開信的知名人士之一。在5月中旬舉行的美國參議員聽證會上,阿爾特曼呼吁對人工智能進行監管,他說,應制定規則來鼓勵企業進行安全開發,“同時確保人們能夠獲得這項技術的好處”。(一些批評者猜測,他所呼吁的監管也可能給OpenAI越來越多的開源競爭對手造成障礙。)

據《財富》雜志的杰里米·卡恩介紹,阿爾特曼曾是創業孵化器Y Combinator的總裁,擅長融資。這一訣竅似乎帶來了巨大的回報:OpenAI與微軟達成了130億美元的合作。

雖然馬斯克已辭去OpenAI的董事會職務,而且據報道,他正在成立一個與OpenAI競爭的人工智能實驗室,但阿爾特曼仍然把他視為自己的導師,稱馬斯克教會他如何在“艱苦研發和硬技術”上突破極限。然而,他并不計劃跟隨馬斯克前往火星:“我不想去火星生活,這聽起來很可怕。但我對其他人想去火星生活感到高興。”

瑪格麗特?米切爾(Margaret Mitchell),Hugging Face首席倫理科學家

“人們表示或是認為,‘你不會編程,不懂統計學,你無足輕重。’令人遺憾的是,通常直到我開始談論技術上的事情,人們才會認真對待我。機器學習領域(ML)存在巨大的文化障礙。”

瑪格麗特·米切爾對人工智能偏見的興趣始于在微軟工作期間發生的幾件令人不安的事情。例如,她在去年的一次采訪中回憶說,她處理的數據[用于訓練該公司的圖像注釋軟件“看見圖片”(Seeing AI)人工智能輔助技術]對種族的描述非常詭異。還有一次,她在系統中輸入了爆炸圖像,輸出結果將殘骸描述為美麗的。

她意識到,僅僅讓人工智能系統在基準測試中表現優異,并不能滿足她。她說:“我想從根本上改變我們看待這些問題的方式、處理和分析數據的方式、評估的方式,以及在這些直接流程中遺漏的所有因素。”

這一使命是有個人代價的。米切爾在2021年登上頭條新聞,當時谷歌解雇了她和蒂米特·格布魯(二人是該公司人工智能倫理部門的聯合負責人)。兩人發表了一篇論文,詳述了大型語言模型的風險,包括環境成本以及將種族主義和性別歧視語言納入訓練數據。他們還直言不諱地批評谷歌在促進多樣性和包容性方面做得不夠,并就公司政策與管理層發生沖突。

米切爾和格布魯已經在人工智能倫理領域取得了重大突破,比如與其他多名研究人員就所謂的“模型卡”(model cards)發表了一篇論文(通過提供記錄性能、識別局限性和偏見的方法,鼓勵提高模型的透明度)。

米切爾在離開谷歌后加入機器學習技術開源平臺提供商Hugging Face,她一直在埋頭苦干,深入研究輔助技術和深度學習,并專注于編碼,以幫助建立人工智能倫理研究和包容性招聘等事項的協議。

米切爾說,盡管她的背景是研究人員和科學家,但她對道德的關注讓人們認為她不知道如何編程。米切爾去年在“擁抱臉”的博客上說:“令人遺憾的是,通常直到我開始談論技術上的事情,人們才會認真對待我。”

穆斯塔法?蘇萊曼(Mustafa Suleyman),Inflection AI聯合創始人兼首席執行官

“毫無疑問,未來5到10年,白領階層的許多工作將發生重大變化。”

蘇萊曼被朋友和同事稱為“穆斯”(Moose),他曾在谷歌擔任人工智能產品和人工智能政策副總裁,并與他人共同創立了研究實驗室DeepMind,該實驗室于2014年被谷歌收購。離開谷歌后,蘇萊曼曾在風投公司Greylock工作,并創辦了一家名為Inflection AI的機器學習初創公司。

本月早些時候,Inflection發布了第一款產品,一款名為Pi的聊天機器人,代表“個人智能”。當前版本的機器人可以記住與用戶的對話,并提供有同理心的回答。蘇萊曼說,最終,它將能夠充當個人“辦公室主任”,可以預訂餐廳和處理其他日常任務。

38歲的蘇萊曼對我們將開始使用何種語言與計算機互動熱情高漲。他在《連線》雜志上寫道,總有一天,我們將“與所有設備進行真正流暢的對話式交互”,這將重新定義人機交互。

在蘇萊曼的設想中,未來人工智能將使白領工作發生重大變化,他還發現了人工智能在應對重大挑戰方面的潛力。關于后者,他認為該技術可以降低住房和基礎設施材料的成本,并能夠幫助分配清潔水等資源。盡管如此,他還是主張避免在此過程中造成傷害,他2018年在《經濟學人》中撰文警告說:

“從無人機面部識別的普及到有偏見的預測性警務,風險在于,在技術優勢的競爭中,個人和集體權利被拋在了一邊。”

莎拉?胡克(Sara Hooker),Cohere For AI總監

“我認為真正重要的一點是,我們需要完善追溯體系,尤其是當你考慮到人工智能在生成錯誤信息或可能被用于邪惡目的的文本方面的能力時。”

薩拉·胡克曾是谷歌大腦(Google Brain)的研究員,去年她加入了多倫多一家由谷歌大腦校友創立的致力于研究超語言模型的初創公司Cohere,并與前同事團聚。此次重聚保持了一定距離——胡克正在領導一個名為Cohere for AI的非營利性人工智能研究實驗室,該實驗室由Cohere資助,但獨立運作。

Cohere for AI旨在“解決復雜的機器學習問題”。在實踐中,這意味著從發布研究論文以提高大型語言模型的安全性和效率,到啟動實施學者計劃(Scholars Program,該計劃旨在通過從世界各地招募人才,擴大人工智能領域的人才庫)。

入選學者計劃的條件之一是之前沒有發表過關于機器學習的研究論文。

胡克說:“當我談到改善地域代表性時,人們認為這是我們承擔的成本。他們認為我們在犧牲已經取得的進步。但事實完全相反。”胡克更了解相關情況。她在非洲長大,并幫助谷歌在加納成立了研究實驗室。

胡克還力圖提升機器學習模型和算法的準確性和可解釋性。最近在接受《全球新聞網》(Global News)采訪時,胡克分享了她對“模型可追溯性”的看法,即追蹤文本何時由模型而不是人類生成,以及應該如何進行改進。她說:“我認為真正重要的一點是,我們需要完善追溯體系,尤其是當你考慮到人工智能在生成錯誤信息或可能被用于邪惡目的的文本方面的能力時。”

由于Cohere最近從英偉達(Nvidia)、甲骨文(Oracle)和Salesforce Ventures那里籌集了2.7億美元的資金,胡克的非營利實驗室與一家擁有知名支持者的初創公司強強聯手。

拉姆曼·喬杜里(Rummann Chowdhury),Parity Consulting科學家,哈佛大學伯克曼·克萊因中心負責任的人工智能研究員

“很少有人提出這樣的基本問題:人工智能本身應該存在嗎?”

喬杜里在人工智能領域的職業生涯始于埃森哲(Accenture)負責任人工智能部門的負責人,她負責設計一種算法工具,用于識別和減少人工智能系統的偏見。她離職后創立了一家名為Parity AI的算法審計公司,該公司后來被推特(Twitter)收購。在那里,她領導了機器學習倫理、透明度和問責團隊(這是一個由研究人員和工程師組成的團隊,致力于減輕社交平臺上算法帶來的危害),她說,在埃隆·馬斯克收購推特后,這項工作變得很有挑戰性。

在8月舉行的DEF CON 31網絡安全大會上,一群頂級人工智能開發者得到白宮的支持(她在其中起到了帶頭作用),將舉辦一場生成式人工智能“紅隊”測試活動,旨在通過評估Anthropic、谷歌、Hugging Face、OpenAI等公司的模型的異常和局限性來提高安全性。

作為監管方面的另一位人工智能專家,43歲的喬杜里最近在《連線》雜志上寫道,應該建立生成式人工智能全球管理機構。她以臉書的監督委員會為例,說明該組織應如何組建。該委員會是一個跨學科的全球組織,專注于問責制。

喬杜里寫道:“像這樣的組織應該像國際原子能機構(IAEA)一樣,持續通過專家咨詢和合作來鞏固其地位,而不是為其他從事全職工作的人提供副業。像臉書監督委員會一樣,它應該接受來自行業的咨詢意見和指導,但也有能力獨立做出有約束力的決定,而各大公司必須遵守這些決定。”

她還推動在產品開發過程中進行她所謂的綜合偏見評估和審計,這將允許對已經研發出的事物進行檢查,但也可以在早期階段就建立相關機制,以決定某些事物是否應該通過創意階段的評估而走向下一階段。

“很少有人提出這樣的基本問題:人工智能本身應該存在嗎?”她在一次關于負責任的人工智能的小組討論中說。

克里斯托瓦爾·巴倫蘇埃拉(Cristóbal Valenzuela),Runway ML聯合創始人兼首席執行官

“生成藝術的歷史并不是始于近期。在最近的人工智能熱潮之外,在藝術創作過程中引入自主系統的想法已經存在了幾十年。不同的是,現在我們正在進入人工合成時代。”

巴倫蘇埃拉通過藝術家兼程序員吉恩·科根的作品了解了神經網絡后,進入了人工智能領域。他對人工智能如此著迷,以至于離開智利的家,成為紐約大學Tisch互動電信項目的一名研究員。

當時他致力于讓藝術家能夠使用機器學習模型,正是在那里,他萌生了創辦Runway的想法。他在接受云計算公司Paperspace采訪時表示:“我開始圍繞這個問題進行頭腦風暴,然后我意識到,‘模特表演平臺’已經有了一個名字:伸展臺。”

雖然許多藝術家已經接受了人工智能,使用像Runway這樣的工具在電影中制作視覺效果或照片,但33歲的巴倫蘇埃拉希望更多的藝術家能擁抱人工智能。

因此,該公司幫助開發了文本到圖像的 “穩定擴散”模型。它還憑借其人工智能視頻編輯模型Gen-1取得了驚人成就,該模型可以改進用戶提供的現有視頻。Gen-2于今年春天推出,為用戶提供了從文本生成視頻的機會。考慮到像Weezer這樣的娛樂公司利用Runway的模型為搖滾樂隊制作巡回宣傳視頻,另一位藝術家使用Runway的模型制作了一部短片,像Runway這樣的工具因有可能改變好萊塢的電影制作方式而引發熱潮。

在與麻省理工學院的一次談話中,他說該公司正在努力幫助藝術家找到他們作品的用例,并向他們保證他們的工作不會被奪走。他還認為,盡管我們沒有意識到,但在許多情況下,我們已經在使用人工智能進行藝術創作,因為用iPhone拍攝的一張照片可能涉及利用多個神經網絡來優化圖像。

“這只是另一種技術,它將幫助你更好地進行創作,更好地表達想法。”他說。

丹米斯·哈撒比斯(Demis Hassabis),谷歌DeepMind首席執行官

“在DeepMind,我們與其他團隊有很大不同,因為我們專注于實現通用人工智能這一登月計劃目標。我們圍繞一個長期路線圖進行籌備(即我們基于神經科學的論文,其中討論了什么是智能,以及達到目標需要完成哪些工作)。”

哈薩比斯擁有倫敦大學學院(University College London)的認知神經科學博士學位,十多年前,他與他人共同創立了神經網絡初創公司DeepMind,引起了轟動。該公司旨在建立強大的計算機網絡,模仿人類大腦的工作方式(于2014年被谷歌收購)。今年4月,在這家互聯網巨頭的所有人工智能團隊進行重組后,哈薩比斯接管了谷歌的整體人工智能工作。

哈薩比斯說,他對國際象棋的熱愛使他進入了編程領域。這位前國際象棋神童甚至用國際象棋錦標賽的獎金買了他的第一臺電腦。現在,他將象棋比賽要求的解決問題和規劃能力以及他的神經科學背景運用到人工智能工作中,他相信人工智能將是“對人類最有益的事情”。

他認為,通用人工智能可能在十年內實現,并將DeepMind描述為受神經科學啟發的人工智能,是解決有關大腦復雜問題的最佳途徑之一。他告訴福特:“我們可以開始揭開某些深奧的大腦之謎,比如意識、創造力和做夢的本質。”當談到機器意識是否可能實現時,他說他對此持開放態度,但認為“結果很可能是,生物系統有一些特殊的東西”是機器無法比擬的。

2016年,DeepMind的人工智能系統AlphaGo在一場5局3勝制的比賽中擊敗了世界頂級人類棋手李世石(Lee Sedol)。有2億多人在線觀看了這場比賽。(在圍棋比賽中,雙方棋手將棋子放在19路乘19路的棋盤上進行比賽。)李世石敗給AlphaGo尤其令人震驚,因為專家們說,人們料想這樣的結果在未來十年內都不會出現。

這樣的時刻讓DeepMind成為了通用人工智能的領軍人物。但并非所有游戲都是如此。AlphaFold 2人工智能系統(DeepMind是該系統的幕后推手)預測了幾乎所有已知蛋白質的三維結構。DeepMind已經在一個公共數據庫中提供了這些預測結果。這一發現可能會加速藥物研發,哈薩比斯和高級研究科學家約翰·江珀(John Jumper)也因此贏得了300萬美元的生命科學突破獎。哈薩比斯還與他人共同創立并經營著一家Alphabet旗下的新公司Isomorphic Labs,致力于利用人工智能助力藥物研發。(財富中文網)

譯者:中慧言-王芳

Like a spaceship full of aliens landing on Earth, artificial intelligence technology seems to have come out of nowhere and instantly changed everything.

From A.I.-generated music that expertly mimics your favorite singer to virtual romantic partners, artificial intelligence technology is mesmerizing, scary, and increasingly accessible.

Businesses aren’t wasting any time pumping money into the technology. In addition to Microsoft’s $13 billion bet on ChatGPT-maker OpenAI, startups like Anthropic, Cohere, Adept AI, Character.AI, and Runway have raised hundreds of millions of dollars apiece in recent months.

As with much of the tech business, the people responsible for the innovation in A.I. are as central to the story as the technology itself. The names of today’s A.I. innovators aren’t as familiar as the established members of the tech industry pantheon, but the influence of these computer scientists and technologists is quickly spreading through their work.

Given how profound and potentially risky their work’s impact on society could be, many of these A.I. innovators have strongly held—and often conflicting—opinions about the technology’s future, its power, and?its dangers.

Fortune took a look at some of the key figures setting the A.I. agenda through their work and their viewpoints. Some work at big companies, some at startups, and some in academia; Some have been toiling for years in specialized branches of A.I., while others are more recent converts. If they have one thing in common, it’s their unique ability to influence how this powerful technology affects the world. Here, listed in no particular order, are 13 of today’s most important A.I. innovators.

****

Daniela Amodei

Cofounder, Anthropic

“It kind of blows my mind that A.I., given the potential reach that it could have, is still such a largely unregulated area.” — source

Daniela Amodei and her brother Dario quit their jobs at OpenAI to cofound Anthropic at the end of 2020, reportedly because of concerns that OpenAI’s deal with Microsoft would increase pressure to release products quickly at the expense of safety protocols.

The company’s chatbot, called Claude, is similar to OpenAI’s ChatGPT but is trained with a technique referred to as “constitutional AI,” which sets principles like choosing responses that are, according to the company, the “least racist and sexist” and encouraging of life and liberty. The approach is based on what Amodei, 35, refers to as Anthropic’s triple H framework for A.I. research: helpful, honest, and harmless.

“It kind of blows my mind that A.I., given the potential reach that it could have, is still such a largely unregulated area,” Amodei said in an interview last year, expressing hope that standard setting organizations, industry groups, and trade associations will step into the breach and provide guidance on what a safe model looks like. “We need all those actors working together to get to the positive outcomes we’re all hoping for.”

In addition to developing a “next-gen algorithm” for its Claude chatbot, Anthropic has been hard at work raising capital. It recently raised $450 million from backers including Google, Salesforce, and Zoom Ventures (less glamorously, it should be noted that an earlier, $580 million funding round that Anthropic raised was led by disgraced crypto entrepreneur Sam Bankman-Fried’s Alameda Research Ventures. Anthropic has not said whether it will return the money).

****

Yann LeCun

Chief A.I. scientist, Meta

“The upcoming AI systems are going to be an amplification of human intelligence in the way that mechanical machines have been an amplification of physical strength. They’re not going to be a replacement.” — source

“Prophecies of AI-fueled doom are nothing more than a new form of obscurantism,” says the French-born LeCun in a preview for an upcoming debate in which he’ll square off against an MIT researcher about whether A.I. poses an existential threat to humanity.

An outspoken advocate that A.I. has the power to amplify human intelligence, LeCun, 62, is widely respected as one of the leading experts in the field of neural networks, which have allowed for breakthroughs in computer vision and speech recognition. His work on a foundational neural network design known as a convolutional neural network and broadening the vision of such networks earned him the 2018 Turing Award, considered the Nobel prize of computing, alongside fellow deep learning pioneers Geoff Hinton and Yoshua Bengio.

Needless to say, LeCun was not among the more than 200 signatories of the recent warning that A.I. poses an extinction level risk to humanity.

A longtime computer science professor at New York University, LeCun joined Facebook (now Meta) in 2013 and now oversees the $700 billion company’s various artificial intelligence efforts. That hasn’t diminished his appetite for engaging in the major debates about A.I., such as the concerns that the technology will take people’s jobs. In a Q&A for Martin Ford’s 2018 book Architects of Intelligence: The Truth About AI from the People Building it, LeCun took issue with a famous prediction of Hinton’s that radiologists, for example, would be out of a job thanks to A.I. Rather, he explained it would free up radiologists time to spend with patients. He went on to say that he imagines some activities will become more expensive like eating at a restaurant where a waiter serves food that a human cook prepared. “The value of things is going to change, with more value placed on human experience and less to things that are automated,” he told Ford.

****

David Luan

CEO and cofounder, Adept

“The pace of progress in AI is astounding. First text generation, then image generation, now computer use.” — source

Before cofounding Adept in 2022, Luan worked at some of the most important A.I. companies, including OpenAI and Google (he also did a brief stint as the director of A.I. at Axom, the maker of the Taser gun and police body cameras). He says the current moment in A.I. is the one he’s most excited about. “We’ve entered the industrialization age of AI. It’s now time to build factories,” Luan said at the Cerebral Valley A.I. Summit earlier this year.

The idea behind Adept is to provide people with an “AI teammate” that can perform computer-based tasks—for example, building a financial model on a spreadsheet—with a few simple text commands. In March, the company raised $350 million in funding at a valuation pegged at more than $1 billion by Forbes.

Luan, 31, said that he spends a lot time thinking about the concerns that A.I. could replace people’s jobs, but that for the “knowledge workers”—the customers that generative A.I. tools like Adept are focused on—the fears are overblown. “Instead of spending like 30 hours of your week updating Salesforce, you spend 1% of your week asking Adept to just do that for you and you spend 99% of the time talking to customers,” Luan said at the Cerebral Valley A.I. Summit.

****

Emad Mostaque

CEO, Stability AI

“If we have agents that are more capable than us that we cannot control that are going across the internet and [are] hooked up and they achieve a level of automation, what does that mean?” — source

Mostaque was born in Jordan but grew up in Bangladesh and the UK, where he earned his bachelor’s degree in computer science at Oxford University in 2005. Before founding Stability AI in 2020, he spent more than a decade working in hedge funds, according to the?New York Times. The stint in finance seems to have provided a nice cushion to start Stability AI, which he reportedly funded himself and later with funding from investors including Coatue and Lightspeed Venture Partners.

The company helped to create text-to-image model, Stable Diffusion, which has been used to generate images that pay little heed to intellectual property rights or to concerns about depicting violence (the product, like some other A.I. tools, has also been criticized for amplifying racial and gender bias). For Mostaque, the priority is to keep the model open-source and without guardrails that restrict what content the model can generate—although, in an effort to make Stability’s A.I. more commercially-attractive, he did later train a version of Stable Diffusion on a dataset that had been filtered to remove pornographic images. “We trust people, and we trust the community,” he told the Times.

That attitude (as well allegations that Mostaque has exaggerated some of his accomplishments, as recently detailed by Forbes) has drawn backlash from others in the A.I. community, public officials, and firms like Getty Images which sued Stability AI for copyright infringement in February, alleging that the company copied 12 million images to train its AI model without a legal basis for using them.

Yet Stability AI’s tools have emerged as among the most popular and well-known representatives in the field of generative A.I. And Mostaque, aged 40 and based in London, defies easy categorization. In March, he was among a group who signed an open letter calling for pause in A.I. development for anything more advanced than GPT-4, the A.I. chatbot from OpenAI. His perspective on A.I. advancements seems to be at two extremes given his recent comments that it could control humanity in the worst case scenario, while stating on another occasion, that A.I. will be disinterested in people.

“Because we can’t conceive of something more capable than us, but we all know people more capable than us. So, my personal belief is it will be like that movie Her with Scarlett Johansson and Joaquin Phoenix: Humans are a bit boring, and it’ll be like, ‘Goodbye’ and ‘You’re kind of boring.’”

****

Fei-Fei Li

Co-director, Stanford’s Institute for Human-Centered AI

“It still feels surreal to be born into this time of history and be in the middle of this technology.” — source

When Li immigrated from China to the U.S. with her family at 16, she says?she had to learn English from scratch while working to get good grades. Today, the co-director for Stanford’s Institute for Human-Centered AI is considered one of the leading lights on the ethical use of A.I.—through writings like “How to make A.I. that’s good for people” —as well as an advocate for diversity in the A.I. field.

Early in her career, Li built ImageNet, a large-scale dataset that has contributed to developments in deep learning and A.I. Now, at Stanford, she’s been researching “ambient intelligence,” which uses A.I. to monitor activity at homes and hospitals. She discussed her work and how bias is critical to consider during Fortune’s Brainstorm AI conference?in December.

“I work a lot in health care. It’s very obvious that if our data comes from certain populations or socio-economic classes, it will have a pretty profound downstream impact,” she said.

According to Li, 47, Stanford now conducts an ethics and society review process for A.I. research projects. “It gets us thinking about how to design fairness, design privacy awareness, and design human well being and dignity into our technology.”

To boost inclusion in the A.I. field, Li co-founded a non-profit known as AI4ALL, which promotes diversity in A.I. education.

One note of controversy in Li’s career occurred during her stint as chief scientist of AI/ML at Google Cloud, when a Google contract to provide A.I. tech to the Pentagon caused an uproar among some employees in 2018. While the contract was not Li’s doing, critics felt her association with it—particularly some of her comments in leaked emails about how to portray the contract to the public—was at odds with her work as an advocate of ethical A.I.

****

Ali Ghodsi

CEO, Databricks

“We should embrace it, because it is here to stay. And I do think it’s going to change everything, and I think it’s going to be mostly positive.” — source

Ali Ghodsi straddles academia and business, with a foot in each world as an adjunct professor at UC Berkeley and the cofounder and CEO of Databricks. One principle that’s central to the Swedish-Iranian tech exec is his committment to open source development.

Ghodsi’s work on open source data processing tool Apache Spark provided the foundation for Databricks, which is?valued at $38 billion. In April, Databricks released Dolly 2.0, an open source rival to ChatGPT, that uses a question-and-answer instruction set created entirely from interactions between Databricks’ 5,000 employees. This means that any company can weave Dolly 2.0 into its own commercial products and services without any cap on usage.

Dolly is more proof of concept than viable product—the model is prone to errors, hallucinations and churning out toxic content. Dolly’s importance, however, is that it showed that A.I. models can be much smaller and cheaper to train and run than the massive proprietary large language models that underpin OpenAI’s ChatGPT or Anthropic’s Claude. And Ghodsi defends making Dolly so freely and easily accessible. “We’re committed to developing AI safely and responsibly and believe as an industry, we’re moving in the right direction by opening up models, like Dolly, for the community to collaborate on,”?Ghodsi told TechCrunch in April.

While generative A.I. is getting a lot of the attention right now, Ghodsi, 45, believes that other types of artificial intelligence, particularly A.I. for data analysis, will have a profound effect across industries. “I think this is just the very beginning, and we are just scratching the surface on what A.I. and data analytics can do,” he told?Fortune in March.

****

Sam Altman

CEO, OpenAI

“If someone does crack the code and builds a superintelligence, however you want to define that, probably some global rules on that are appropriate.”

Altman founded OpenAI with Elon Musk, Ilya Sutskever, and Greg Brockman in 2015, out of a fear that Google would become too powerful and control A.I.

Since then, OpenAI has turned into one of the most influential companies in the A.I. arena and emerged as the standard bearer for “generative A.I.”: Its ChatGPT tool is the fastest growing app of all time, having garnered 100 million monthly active users just two months after its launch. DALL-E 2, another OpenAI product, is one of most popular text-to-image generators, capable of producing high-resolution images that have depth-of-field effects with shadows, shading, and reflections.

While he’s not an A.I. researcher or a computer scientists, Altman, 38, sees the tools as a stepping stone on a mission he shares with others in the field: developing a computer superintelligence known as artificial general intelligence, or AGI. He believes that “AGI is probably necessary for humanity to survive,” but has suggested he’ll be cautious as he works toward it.

Altman’s quest for AGI has not blinded him to the risks: he was among the most prominent names to sign the Center for AI safety warning about A.I.’s threat to humanity. At a hearing before U.S. senators in mid-May, Altman called for A.I. regulation, saying rules should be created to incentivize safety “while ensuring that people are able to access the technology’s benefits.” (Some critics speculated that the regulation he called for could also create hurdles to a growing crop of open source competitors to OpenAI).

A former president of startup incubator Y Combinator, Altman is skilled at raising money according to a profile by?Fortune’s?Jeremy Kahn. That knack appears to have paid off big time with OpenAI’s $13 billion alliance with Microsoft.

While Musk is no longer affiliated with OpenAI and is reportedly launching a rival A.I. lab, Altman still cites Musk as a mentor?who taught him to push the limits on “hard R&D and hard technology.” He has no plans to follow Musk on mission to Mars however: “I have no desire to go live on Mars, it sounds horrible. But I’m happy other people do.”

****

Margaret Mitchell

Chief ethics scientist, Hugging Face

“People say or think, ‘You don’t program, you don’t know about statistics, you are not as important,’ and it’s often not until I start talking about things technically that people take me seriously which is unfortunate. There is a massive cultural barrier in ML.” — source

Margaret Mitchell’s interest in A.I. bias began after a couple of troubling instances while working at Microsoft. The data she worked with for the company’s Seeing AI assistance technology, for example, expressed odd descriptions of people’s race, she recalled in an interview last year. Another time, she fed a system images of an explosion and the output described the wreckage as beautiful.

She realized it wouldn’t satisfy her to simply make A.I. systems perform better on benchmarks. “I wanted to fundamentally shift how we were looking at these problems, how we were approaching data and analysis of data, how we were evaluating and all of the factors we were leaving out with these straightforward pipelines,” she said.

That mission has come at a personal cost. Mitchell made headlines in 2021 when Google fired her and Timnit Gebru from their jobs as co-heads of the company’s A.I. ethics unit. The pair had published a paper detailing risks of large language models, including the environmental cost and racist and sexist language being funneled into training data. They were also outspoken about insufficient diversity and inclusion efforts at Google and clashed with management over company policies.

Mitchell and Gebru had already achieved significant breakthroughs in the A.I. ethics field, like publishing a paper with multiple other researchers on so-called “model cards,” which encourage more transparency on models by providing a way to document performance and identify limitations and biases.

At Hugging Face, an open-source platform provider of machine learning tech she joined after Google, Mitchell has worked intensely on assistive tech and deep learning, and focuses on coding to help build protocols for matters like ethical A.I. research and inclusive hiring.

Despite her background as a researcher and scientist, Mitchell says her focus on ethics leads people to assume she doesn’t know how to program. “It’s often not until I start talking about things technically that people take me seriously which is unfortunate,” Mitchell said on a Hugging Face blog last year.

****

Mustafa Suleyman

Cofounder and CEO, Inflection AI

“Unquestionably, many of the tasks in white-collar land will look very different in the next five to 10 years.” — source

Known to friends and colleagues as “Moose,” Suleyman previously worked at Google as VP of AI Products and AI Policy, and co-founded DeepMind, a research lab that was bought by Google in 2014. Since his time at Google, Suleyman has worked for VC firm Greylock and launched a machine learning startup known as Inflection AI.

Earlier this month, Inflection released its first product, a chatbot named Pi?for “personal intelligence.” The current version of the bot can remember conversations with users and offer empathetic responses. Eventually, Suleyman says it will be capable of serving as a personal “Chief of Staff” that can book restaurant reservations and handle other daily tasks.

Suleyman, 38, is enthusiastic about what language we’ll start using to engage with computers. For Wired, he wrote that we’ll someday have “truly fluent, conversational interactions with all our devices,” which will redefine human-machine interaction.

Suleyman envisions a future where A.I. will cause white collar work to look very different,?but also sees potential for it to handle big challenges. On the latter, he thinks the technology can lower the cost of materials for housing and infrastructure and help allocate resources like clean water. Still, he’s a proponent of avoiding harms on the way, writing a warning in the Economist in 2018:

“From the spread of facial recognition in drones to biased predictive policing, the risk is that individual and collective rights are left by the wayside in the race for technological advantage.”

****

Sara Hooker

Director, Cohere For AI

“Part of what I think is going to be really important, especially when you think about things like misinformation or the ability to generate texts that might be used in nefarious ways, is we need better traceability.” – source

A former researcher at Google Brain, Sara Hooker reunited with her ex-colleagues last year when she joined Cohere, a Toronto startup dedicated to ultra language models and founded by Google Brain alums. It’s an arms-length reunion though—Hooker is heading up a non-profit research lab called Cohere for AI that’s funded by Cohere but operates independently.

Cohere for AI describes its mission as “solving complex machine learning problems.” In practice that means everything from research papers to make LLMs safer and more efficient to the Scholars Program, which seeks to broaden the pool of people involved in A.I. by recruiting talent from all over the world.

One of the criteria to be eligible for the Scholars Program is that a person has not previously published a research paper on machine learning.

“When I talk about improving geographic representation, people assume this is a cost we are taking on. They think we are sacrificing progress,” Hooker says. “It is completely the opposite.” Hooker would know. She grew up in Africa, and helped establish Google’s research lab in Ghana.

Hooker also pushes for ML models and algorithms that are accurate and explainable. Speaking to Global News recently, Hooker shared her thoughts on “model traceability,” or the ability to trace when a text is generated by a model instead of a human, and how improvements should be made to it. “Part of what I think is going to be really important, especially when you think about things like misinformation or the ability to generate texts that might be used in nefarious ways, is we need better traceability,” she said.

And with Cohere having recently raised $270 million in funding from Nvidia, Oracle, and Salesforce Ventures, Hooker’s non-profit lab is tied to a startup with some marquee backers.

****

Rummann Chowdhury

Scientist at Parity Consulting and Responsible AI Fellow, Harvard University’s Berkman Klein Center

“There’s rarely the fundamental question asked: should this thing even exist?” — source

Chowdhury’s career in A.I. kicked off as a leader for responsible AI at Accenture, where she oversaw design of an algorithmic tool to identify and mitigate bias in AI systems. She left to found an algorithmic auditing company known as Parity AI, and it was later acquired by Twitter. There, she directed the ML Ethics, Transparency, and Accountability team, which was a group of researchers and engineers that worked to mitigate algorithmic harms on the social platform, something she says became challenging after Twitter was acquired by Elon Musk.

She played a leading role among a group of top A.I. developers who got support from the White House to put on a generative A.I. “red teaming” event that aims to improve security by evaluating models from Anthropic, Google, Hugging Face, OpenAI, and others for quirks and limitations during the DEF CON 31 cybersecurity conference in August.

As another A.I. expert on the regulation train, Chowdhury, 43, wrote in Wired recently that there ought to be a generative A.I. global governance body. She pointed to Facebook’s Oversight Board, which is an interdisciplinary global group focused on accountability, as an example of what the body could look like.

“An organization like this should be a consolidated ongoing effort with expert advisory and collaborations, like the IAEA, rather than a secondary project for people with other full-time jobs,” Chowdhury wrote. “Like the Facebook Oversight Board, it should receive advisory input and guidance from industry, but have the capacity to make independent binding decisions that companies must comply with.”

She’s also pushed for what she calls integrated bias assessments and audits in the product development process, which would allow an inspection of something that’s already been built but also having mechanisms in place from the early stages to decide whether something should make it past the idea phase.

“There’s rarely the fundamental question asked: should this thing even exist?” she said during a panel discussion?on responsible A.I.

****

Cristóbal Valenzuela

Cofounder and CEO, Runway ML

“The history of generative art is not new. The idea of involving an autonomous system in the art-making process has been around for decades outside of the recent AI boom. What’s different is that now we are entering a synthetic age.” — source

Valenzuela got into A.I. after learning about neural networks through the work of artist and programmer Gene Kogan. He became so fascinated that he left his home in Chile to become a researcher at NYU Tisch’s Interactive Telecommunications Program.

It was there that the idea for Runway came to him as he worked to make machine learning models accessible to artists. “I started brainstorming ideas around that and then I realized that “a platform for models” already has a name: a runway,” he told cloud computing company Paperspace.

While many artists have embraced A.I., using tools like Runway’s for visual effects in movies or creating photographs, the 33-year old Valenzuela wants even more artists to embrace A.I.

So, the company helped develop text-to-image model Stable Diffusion. It also made solo feats with its A.I. video editing model, Gen-1 that could improve existing video fed by users. Gen-2 followed this spring, providing users the chance to generate videos from text. Given that entertainers like Weezer have taken advantage of its models by having it make a tour promo video for the rock band and another artist made a short film using the latter model, tools like Runway’s have gotten buzz for their potential to change how Hollywood approaches filmmaking.

In a talk with MIT, he said the company is working on helping artists find the use cases for their work and reassure them that their jobs won’t be taken. He also argues that in many cases, we’re already using A.I. for artwork even if we don’t realize since a photo taken on an iPhone can involve multiple neural networks to optimize an image.

“It’s just another technology that will help you do things in a better way and express you better,” he said.

****

Demis Hassabis

CEO, Google DeepMind

“At DeepMind, we’re quite different from other teams in that we’re pretty focused around this one moonshot goal of AGI. We’re organized around a long-term roadmap, which is our neuroscience based thesis, which talks about what intelligence is and what’s required to get there.” — source

With a PhD in cognitive neuroscience from the University College London, Hassabis made waves by cofounding neural networking startup DeepMind more than a decade ago. The company, which was acquired by Google in 2014, aims to build powerful computer networks that mimic the way the?human brain works. In April, Hassabis took command of Google’s overall A.I. efforts, after a reorg that merged the internet giant’s various A.I. teams.

Hassabis says he got into programming through his love of chess. The former child chess prodigy even bought his first computer from the winnings of chess tournaments. Now, he uses the problem solving and planning required from the game plus his neuroscience background in his work on A.I., which he believes is going to be “the most beneficial thing to humanity ever.”

He thinks AGI could happen within a decade, and describes DeepMind as neuroscience-inspired A.I. and one of the best ways to address complex questions about the brain. “We could start shedding light on some of the profound mysteries of the mind like the nature of consciousness, creativity, and dreaming,” he told Ford. And when it comes to whether machine consciousness is possible, he says he’s open minded about that, but thinks “it could well turn out that there’s something special about biological systems” that machines couldn’t match.

In 2016, DeepMind’s A.I. system AlphaGo beat Lee Sedol, the world’s top human player at the strategy game Go, in which players place stones on a 19 by 19 grid, in a best-of-five match viewed by more than 200 million online. Sedol’s defeat to the system was especially shocking since experts said such an outcome wasn’t expected for another decade.

Moments like that have made DeepMind the leading face of AGI. But it’s not all games. DeepMind is behind AlphaFold 2, an A.I. system has predicted the 3-D structures of almost every known protein. DeepMind has made these predictions available in a public database. It’s a discovery that could accelerate drug development and that earned Hassabis and senior staff research scientist John Jumper a $3 million Breakthrough Prizes in Life Sciences award. Hassabis also co-founded and runs a new Alphabet-owned company, Isomorphic Labs, dedicated to using A.I. to help in drug discovery.

財富中文網所刊載內容之知識產權為財富媒體知識產權有限公司及/或相關權利人專屬所有或持有。未經許可,禁止進行轉載、摘編、復制及建立鏡像等任何使用。
0條Plus
精彩評論
評論

撰寫或查看更多評論

請打開財富Plus APP

前往打開

            主站蜘蛛池模板: 嫩江县| 宜春市| 瑞金市| 平利县| 邓州市| 永川市| 梅州市| 正阳县| 乌兰浩特市| 冕宁县| 集安市| 堆龙德庆县| 镇平县| 琼结县| 海盐县| 会同县| 淅川县| 岑巩县| 镇坪县| 永善县| 轮台县| 乡宁县| 天长市| 广丰县| 稷山县| 高雄县| 青海省| 石林| 伊通| 横峰县| 邯郸县| 汤阴县| 收藏| 浦城县| 田东县| 彭阳县| 长丰县| 宜城市| 洪湖市| 怀柔区| 翁牛特旗|