OpenAI的人工智能軟件必須使用專用計算機芯片,而芯片荒阻礙了該公司的業務,并且除了ChatGPT以外,該公司并不打算發布面向消費者的產品。據報道,OpenAI聯合創始人兼首席執行官山姆·阿爾特曼兩周前在倫敦與軟件開發者和初創公司CEO們召開了一次非公開會議。一位與會者的博客爆料稱,阿爾特曼在會上披露了許多信息,以上的信息只是其中的兩條。據稱此次會議約有20人參會。最初發表這篇博客的頁面顯示,應OpenAI的要求,爆料此次閉門會議的賬號已經關閉,但這并沒有阻止人工智能界深入分析這位有影響力的CEO的(所謂的)言論。
一個互聯網存檔網站已經保存了一份原博客的副本,之后文章內容在社交媒體和程序員聚集的多個論壇上廣泛傳播。人工智能專家拉扎·哈畢比在博客中寫道,阿爾特曼表示,OpenAI無法買到足夠多運行人工智能應用需要使用的專用計算機芯片圖形處理單元(GPU),這阻礙了公司的短期計劃,也為使用OpenAI服務的開發者帶來了麻煩。哈畢比是Humanloop公司的聯合創始人兼CEO。哈畢比的初創公司位于倫敦,該公司率先提出了提高大語言模型訓練效率的方法。大語言模型是OpenAI ChatGPT使用的基礎技術。
GPU荒導致OpenAI更難支持用戶通過大語言模型推送更多數據,并延緩了公司發布更多功能和服務的計劃。該公司的ChatGPT等產品均以大語言模型作為核心。此外,博客中表示,芯片荒還降低了OpenAI現有服務的速度和可靠性,這會令客戶不滿,使他們不愿意基于OpenAI的技術開發企業應用。OpenAI在生成式人工智能繁榮中的先行者優勢,也會因為芯片供應緊張而面臨威脅,因為谷歌(Google)和其他知名度較低的競爭對手都有能力推出競爭性服務,而且開源競爭對手已經進一步站穩腳跟。
關于“語境窗口”
阿爾特曼列舉了OpenAI因為硬件(如芯片)短缺無法開展的多項業務。哈畢比在博客中寫道,其中包括向其GPT大語言模型的大多數客戶提供更長的“語境窗口”。語境窗口決定了在模型中輸入一條提示詞可以調用的數據數量,以及模型的響應時間。大多數GPT-4用戶的語境窗口支持的標記數量為8,000個(一個標記是人工智能模型進行預測所依據的一段數據,相當于約一個半英文單詞)。OpenAI在3月宣布為其模型的精選客戶提供支持32,000個標記的語境窗口,但很少有用戶能夠使用該功能,哈畢比的博客稱,阿爾特曼將此歸咎于GPU短缺。
全球大多數人工智能應用在GPU上訓練和運行。GPU作為一種計算機芯片,通過高速并行處理進行數據分析。大多數GPU芯片來自一家公司,那就是英偉達(Nvidia),而且售價可能高達數千甚至數十萬美元。市場觀察家已經發現,由于英偉達與生成式人工智能繁榮的關聯,其股價暴漲,而且其市值最近突破了1萬億美元。
哈畢比在博客中爆料,OpenAI聯合創始人兼CEO還向開發者保證,除了ChatGPT以外,OpenAI沒有計劃發布任何面向消費者的產品。哈畢比稱,許多參會的開發者告訴阿爾特曼,他們對于使用OpenAI的人工智能模型進行開發感到擔心,因為無法確定OpenAI是否會發布競爭性產品。阿爾特曼表示,ChatGPT將是其唯一一款面向消費者的產品,而且公司的未來愿景是成為一款“超級智能的工作助手”,但OpenAI“不會涉足”許多需要使用GPT大語言模型的行業特定應用。
阿爾特曼還表示,他一個月前所說的“超大規模模型的時代”將要結束的觀點被錯誤解讀。他對開發者表示,他想要表達的意思是,OpenAI最強大的大語言模型GPT-4的規模已經足夠龐大,因此公司不可能繼續快速擴大人工智能系統的規模。他在倫敦會議上表示,OpenAI會繼續創建更大的模型,但它們的規模只會有GPT-4的兩倍或三倍,而不是擴大數百萬倍。
爆料稱,阿爾特曼在與開發者的對話中,還分享了OpenAI的近期發展規劃。哈畢比的博客稱,阿爾特曼表示,在2023年,OpenAI的目標是提高GPT-4的運行速度和降低其成本,提供更長的“語境窗口”以支持用戶向OpenAI的GPT模型中輸入更多數據并獲得更長的輸出結果,推出更方便客戶根據具體使用案例調整GPT-4的方法,并支持ChatGPT及其大語言模型能夠保留歷史對話記憶,從而使用戶想要繼續未完成的對話或重復與模型的互動時,不需要每次都要重復按照相同的順序輸入提示。
阿爾特曼表示,公司明年的工作重點是發布GPT-4根據輸入的圖片輸出結果的能力。OpenAI在3月發布該模型時演示了這項功能,但尚未向大多數客戶開放。
哈畢比寫道,在監管方面,阿爾特曼對開發者表示,他并不認為現有模型帶來了任何嚴重的風險,而且“對現有模型進行監管或者禁用將是嚴重的錯誤”。阿爾特曼重申了他公開的立場,即OpenAI認同開源人工智能軟件的重要性,并證實了科技刊物《The Information》關于OpenAI正在將其某一款模型開源的報道。博客稱,阿爾特曼表示,公司可能將其GPT-3模型開源,但到目前為止之所以沒有這樣做,是因為阿爾特曼“懷疑有多少個人和公司有能力托管和服務”大語言模型。
據稱阿爾特曼在閉門會議上表示,OpenAI仍在分析OpenAI Plus的用戶希望如何使用這款插件。該插件支持大語言模型使用其他軟件。哈畢比在博客中表示,這可能意味著這款插件尚未達到產品與市場契合的程度,因此在短期內不會通過OpenAI的API向企業客戶發布。
哈畢比和OpenAI并未立即回復《財富》雜志的置評請求。
哈畢比的博客在社交媒體和開發者論壇上引起了激烈討論。許多人表示,阿爾特曼的言論證明了GPU荒問題對于釋放大語言模型的商業潛力的重要性。也有人表示,這證明了來自開源人工智能社區的許多創新對于人工智能未來的重要性。開源社區開發的創新途徑,可以使用更少算力和更少數據,實現與規模最大的專有人工智能模型類似的性能。
Signal基金會(Signal Foundation)的總裁、大型科技公司的主要批評者梅雷迪思·惠特克在柏林召開的一次會議上接受場邊采訪時表示,這篇博客表明,全球最大的科技公司扼制了當前人工智能軟件的基礎,因為只有這些大公司有實力提供訓練最大規模的人工智能模型所需要的計算資源和數據。她說到:“看得出來,盡管OpenAI能夠使用微軟(Microsoft)的基礎設施,但對其約束最大的因素是GPU?!彼岬降氖荗penAI與微軟的合作。到目前為止,微軟在來自舊金山的人工智能初創公司OpenAI投資了130億美元。 “你必須有超級昂貴的基礎設施才能這樣做?!彼硎?,人們不要誤以為開源人工智能社區存在,就代表“行業格局是真正民主化和競爭性的”。 (財富中文網)
《財富》駐柏林記者大衛·邁爾為本文做出了貢獻。
翻譯:劉進龍
審校:汪皓
OpenAI的人工智能軟件必須使用專用計算機芯片,而芯片荒阻礙了該公司的業務,并且除了ChatGPT以外,該公司并不打算發布面向消費者的產品。據報道,OpenAI聯合創始人兼首席執行官山姆·阿爾特曼兩周前在倫敦與軟件開發者和初創公司CEO們召開了一次非公開會議。一位與會者的博客爆料稱,阿爾特曼在會上披露了許多信息,以上的信息只是其中的兩條。據稱此次會議約有20人參會。最初發表這篇博客的頁面顯示,應OpenAI的要求,爆料此次閉門會議的賬號已經關閉,但這并沒有阻止人工智能界深入分析這位有影響力的CEO的(所謂的)言論。
一個互聯網存檔網站已經保存了一份原博客的副本,之后文章內容在社交媒體和程序員聚集的多個論壇上廣泛傳播。人工智能專家拉扎·哈畢比在博客中寫道,阿爾特曼表示,OpenAI無法買到足夠多運行人工智能應用需要使用的專用計算機芯片圖形處理單元(GPU),這阻礙了公司的短期計劃,也為使用OpenAI服務的開發者帶來了麻煩。哈畢比是Humanloop公司的聯合創始人兼CEO。哈畢比的初創公司位于倫敦,該公司率先提出了提高大語言模型訓練效率的方法。大語言模型是OpenAI ChatGPT使用的基礎技術。
GPU荒導致OpenAI更難支持用戶通過大語言模型推送更多數據,并延緩了公司發布更多功能和服務的計劃。該公司的ChatGPT等產品均以大語言模型作為核心。此外,博客中表示,芯片荒還降低了OpenAI現有服務的速度和可靠性,這會令客戶不滿,使他們不愿意基于OpenAI的技術開發企業應用。OpenAI在生成式人工智能繁榮中的先行者優勢,也會因為芯片供應緊張而面臨威脅,因為谷歌(Google)和其他知名度較低的競爭對手都有能力推出競爭性服務,而且開源競爭對手已經進一步站穩腳跟。
關于“語境窗口”
阿爾特曼列舉了OpenAI因為硬件(如芯片)短缺無法開展的多項業務。哈畢比在博客中寫道,其中包括向其GPT大語言模型的大多數客戶提供更長的“語境窗口”。語境窗口決定了在模型中輸入一條提示詞可以調用的數據數量,以及模型的響應時間。大多數GPT-4用戶的語境窗口支持的標記數量為8,000個(一個標記是人工智能模型進行預測所依據的一段數據,相當于約一個半英文單詞)。OpenAI在3月宣布為其模型的精選客戶提供支持32,000個標記的語境窗口,但很少有用戶能夠使用該功能,哈畢比的博客稱,阿爾特曼將此歸咎于GPU短缺。
全球大多數人工智能應用在GPU上訓練和運行。GPU作為一種計算機芯片,通過高速并行處理進行數據分析。大多數GPU芯片來自一家公司,那就是英偉達(Nvidia),而且售價可能高達數千甚至數十萬美元。市場觀察家已經發現,由于英偉達與生成式人工智能繁榮的關聯,其股價暴漲,而且其市值最近突破了1萬億美元。
哈畢比在博客中爆料,OpenAI聯合創始人兼CEO還向開發者保證,除了ChatGPT以外,OpenAI沒有計劃發布任何面向消費者的產品。哈畢比稱,許多參會的開發者告訴阿爾特曼,他們對于使用OpenAI的人工智能模型進行開發感到擔心,因為無法確定OpenAI是否會發布競爭性產品。阿爾特曼表示,ChatGPT將是其唯一一款面向消費者的產品,而且公司的未來愿景是成為一款“超級智能的工作助手”,但OpenAI“不會涉足”許多需要使用GPT大語言模型的行業特定應用。
阿爾特曼還表示,他一個月前所說的“超大規模模型的時代”將要結束的觀點被錯誤解讀。他對開發者表示,他想要表達的意思是,OpenAI最強大的大語言模型GPT-4的規模已經足夠龐大,因此公司不可能繼續快速擴大人工智能系統的規模。他在倫敦會議上表示,OpenAI會繼續創建更大的模型,但它們的規模只會有GPT-4的兩倍或三倍,而不是擴大數百萬倍。
爆料稱,阿爾特曼在與開發者的對話中,還分享了OpenAI的近期發展規劃。哈畢比的博客稱,阿爾特曼表示,在2023年,OpenAI的目標是提高GPT-4的運行速度和降低其成本,提供更長的“語境窗口”以支持用戶向OpenAI的GPT模型中輸入更多數據并獲得更長的輸出結果,推出更方便客戶根據具體使用案例調整GPT-4的方法,并支持ChatGPT及其大語言模型能夠保留歷史對話記憶,從而使用戶想要繼續未完成的對話或重復與模型的互動時,不需要每次都要重復按照相同的順序輸入提示。
阿爾特曼表示,公司明年的工作重點是發布GPT-4根據輸入的圖片輸出結果的能力。OpenAI在3月發布該模型時演示了這項功能,但尚未向大多數客戶開放。
哈畢比寫道,在監管方面,阿爾特曼對開發者表示,他并不認為現有模型帶來了任何嚴重的風險,而且“對現有模型進行監管或者禁用將是嚴重的錯誤”。阿爾特曼重申了他公開的立場,即OpenAI認同開源人工智能軟件的重要性,并證實了科技刊物《The Information》關于OpenAI正在將其某一款模型開源的報道。博客稱,阿爾特曼表示,公司可能將其GPT-3模型開源,但到目前為止之所以沒有這樣做,是因為阿爾特曼“懷疑有多少個人和公司有能力托管和服務”大語言模型。
據稱阿爾特曼在閉門會議上表示,OpenAI仍在分析OpenAI Plus的用戶希望如何使用這款插件。該插件支持大語言模型使用其他軟件。哈畢比在博客中表示,這可能意味著這款插件尚未達到產品與市場契合的程度,因此在短期內不會通過OpenAI的API向企業客戶發布。
哈畢比和OpenAI并未立即回復《財富》雜志的置評請求。
哈畢比的博客在社交媒體和開發者論壇上引起了激烈討論。許多人表示,阿爾特曼的言論證明了GPU荒問題對于釋放大語言模型的商業潛力的重要性。也有人表示,這證明了來自開源人工智能社區的許多創新對于人工智能未來的重要性。開源社區開發的創新途徑,可以使用更少算力和更少數據,實現與規模最大的專有人工智能模型類似的性能。
Signal基金會(Signal Foundation)的總裁、大型科技公司的主要批評者梅雷迪思·惠特克在柏林召開的一次會議上接受場邊采訪時表示,這篇博客表明,全球最大的科技公司扼制了當前人工智能軟件的基礎,因為只有這些大公司有實力提供訓練最大規模的人工智能模型所需要的計算資源和數據。她說到:“看得出來,盡管OpenAI能夠使用微軟(Microsoft)的基礎設施,但對其約束最大的因素是GPU。”她提到的是OpenAI與微軟的合作。到目前為止,微軟在來自舊金山的人工智能初創公司OpenAI投資了130億美元。 “你必須有超級昂貴的基礎設施才能這樣做?!彼硎?,人們不要誤以為開源人工智能社區存在,就代表“行業格局是真正民主化和競爭性的”。 (財富中文網)
《財富》駐柏林記者大衛·邁爾為本文做出了貢獻。
翻譯:劉進龍
審校:汪皓
Shortages of the specialized computer chips needed to run its artificial intelligence software are holding back OpenAI’s business, and the company has no intention of releasing a consumer-facing product beyond ChatGPT. Those are just two of the disclosures OpenAI cofounder and CEO Sam Altman reportedly made to a group of software developers and startup CEOs at a private meeting in London two weeks ago, according to a blog post written by one of the participants. The account of the closed-door meeting, reportedly attended by about 20 people, was later taken down at OpenAI’s request, according to a note appended to the page where it initially appeared, but that hasn’t stopped the A.I. community from poring over the influential CEO’s (alleged) comments.
An internet archiving site had already saved a copy of the original blog post, and it has since circulated on social media and several coder-oriented discussion boards. Altman said OpenAI’s inability to access enough graphics processing units (GPUs), the specialized computer chips used to run A.I. applications, is delaying OpenAI’s short-term plans and causing problems for developers using OpenAI’s services, according to the blog post penned by Raza Habib, an A.I. expert who is also the cofounder and CEO of Humanloop. Habib’s London-based startup has pioneered methods to make the training of large language models, such as those that underpin OpenAI’s ChatGPT, more efficient.
The shortage of GPUs has made it harder for OpenAI to let users push more data through the large language models that underpin its software, such as ChatGPT, and slowed the company’s planned rollout of additional features and services. It has also made OpenAI’s existing services slower and less reliable, according to the blog post, a fact that is frustrating customers and making them reluctant to build enterprise applications on top of OpenAI’s technology. The chip supply crunch has risked OpenAI’s first-mover advantage in the generative A.I. boom, as Google—as well as lesser-known rivals—has been able to roll out competing services, and open-source competitors have gained a greater foothold.
All about the ‘context window’
Altman laid out several things that OpenAI just can’t do yet because it lacks the hardware (i.e., the chips). These include providing a longer “context window” to most customers of its GPT large language models, Habib wrote in his blog post. The context window determines how much data can be used in a single prompt that is fed into the model and how long the model’s response can be. Most users of GPT-4 have a context window that is 8,000 tokens long (a token is a segment of data on which the underlying A.I. model makes a prediction, equivalent to about one and a half words of English). OpenAI announced a 32,000-token window for select users of the model in March, but few users have been granted access to that feature, a fact Altman blamed on the lack of GPUs, Habib wrote.
The majority of the world’s A.I. applications are trained and run on GPUs, a kind of computer chip that is designed to crunch data using parallel processing at high speeds. Most of those chips are made by just one company, Nvidia, and can cost thousands to hundreds of thousands of dollars. Market watchers already know that Nvidia’s stock has soared due to its association with the boom in generative A.I., and its market valuation recently crossed the $1 trillion threshold.
The OpenAI cofounder and CEO also reportedly assured the developers that OpenAI has no plans to launch any consumer-facing products beyond ChatGPT, according to Habib’s post. Habib had said that many developers at the meeting told Altman they were concerned about using OpenAI’s A.I. models to build upon if OpenAI itself might later roll out competing products. Altman reportedly said ChatGPT would be its only consumer-facing product and that his vision for its future was as a “super smart assistant for work” but that many industry-specific cases involving the underlying GPT large language models OpenAI “wouldn’t touch.”
Altman also reportedly said that comments he had a month ago about “the era of giant models” being over had been wrongly interpreted. The OpenAI chief told developers that he only meant to say that given how large GPT-4, OpenAI’s most powerful large language model, already is, it would not be possible to continue to scale up A.I. systems exponentially. He told the London meeting that OpenAI would continue to create larger models, but they would be only two or three times bigger than GPT-4, not millions of times larger.
In the conversation with developers, Altman also reportedly laid out OpenAI’s near-term road map. Within 2023, Altman said OpenAI’s goals were to make GPT-4 faster and cheaper, provide a longer “context window” to allow people to feed OpenAI’s GPT models more data and receive longer outputs, roll out an easier way to fine-tune GPT-4 for specific customer use cases, and also allow ChatGPT and its underlying large language models to retain a memory of past dialogues, so that one would not have to repeat the same sequence of prompts each time a person wanted to pick up a conversation where they left off or repeat a certain interaction with the model, Habib’s blog post said.
Next year, Altman reportedly said the priority would be to roll out GPT-4’s ability to receive images as inputs and outputs, a feature the company demonstrated when it debuted the model in March, but has not made available to most customers yet.
When it comes to regulation, Altman said to the developers that he did not think existing models posed any outsize risk and that “it would be a big mistake to regulate or ban them,” Habib wrote. Altman reiterated his public stance that OpenAI believed in the importance of open-source A.I. software and confirmed a report from the tech publication The Information that OpenAI is considering open-sourcing one of its models. According to the blog, Altman said the company might open-source its GPT-3 model and only hadn’t done so yet because Altman “was skeptical of how many individuals and companies would have the capability to host and serve” large language models.
Altman reportedly told the closed-door meeting that the company was still trying to figure out how ChatGPT Plus customers wanted to use the plugins that allow the large language model to use other software. Habib said in the blog that this probably meant that the plugins did not yet have product-market fit and would not be rolled out to enterprise customers through OpenAI’s API anytime soon.
Neither Habib nor OpenAI immediately responded to requests for comment from Fortune.
Habib’s blog post inspired heated discussion on social media and developer forums. Many said Altman’s comments showed just how much of a problem the lack of GPUs is for realizing the business potential of large language models. Other said it showed just how vital many of the innovations emanating from the open-source A.I. community—which has developed innovative ways to achieve similar performance to some of the largest proprietary A.I. models using much less computing power and much less data—are to the technology’s future.
Meredith Whittaker, the president of the Signal Foundation and a leading critic of Big Tech, interviewed on the sidelines of a conference in Berlin, said the blog post showed the stranglehold that the world’s largest technology companies hold over the foundations of today’s A.I. software because only these companies can afford the computing resources and data needed to train the largest A.I. models. “What you see is that the primary constraint, even with access to Microsoft’s infrastructure, is GPUs,” she said, referring to OpenAI’s close partnership with Microsoft, which has invested $13 billion into the San Francisco A.I. startup to date. “You need incredibly expensive infrastructure to be able to do this.” She said people should not confuse the fact that an open-source A.I. community exists “with an actually democratic and competitive landscape.”
Fortune reporter David Meyer in Berlin contributed reporting to this story.