美國聯邦交通運輸管理局(Federal Transit Administration)的卡琳娜·里克斯說:“我從未遇到過真正喜歡交通的人。”
當然,像她一樣以減少交通擁堵為使命的專業人士除外。
里克斯對交通模式的關注成就了自己的事業。在加入美國聯邦交通運輸管理局擔任研究、創新和論證副局長之前,她曾經在賓夕法尼亞州的匹茲堡市擔任交通與基礎設施主任。她花了大量時間思考汽車、公共交通、公路和行人,以及如何讓交通變得更加順暢。
里克斯表示:“如果你在高峰期出行,整個交通系統已經滿負荷,只要一個小小的交通中斷就能夠引發巨大的問題。我的工作就是快速發現這些中斷事件,并迅速調整交通系統,以繞過它們繼續運行。”
里克斯希望優化的問題,將對所有人的出行產生影響,尤其是在城市。她解釋稱,擁堵是交通系統面臨的首要問題,并且這種狀況在大都市已經司空見慣。除此之外還有在特定時間會出現的各種變量,例如人類駕駛員和地理狀況等,這導致嘗試解決交通問題就像是面對一個令人瞠目結舌的謎題。
她表示,如果說有減少交通擁堵的簡單方法,那么問題應該在50年前就已經解決了。相反,她和政府部門以及Lyt等交通領域的初創公司,正在研究大量可用的交通數據,包括交通傳感器數據、共享出行數據甚至智能手機上的自行車和小型摩托車數據等,并根據這些數據決定如何讓人們安全快速地上班、回家和去食品雜貨店購物。
她們提出的解決方案需要使用人工智能和機器學習。
Lyt的創始人及首席執行官蒂姆·梅納德解釋說:“有許多任務,比如模式識別等,人并不比機器更擅長。人工智能是一項偉大的技術,因為你需要對系統進行全方位研究。你首先可以向人工智能提供不同信息,然后將人工智能納入交通系統,用于改變系統運行模式。”Lyt是一個軟件技術平臺,致力于為城市提供出行解決方案。
梅納德在創建Lyt之前,已經研究智能交通系統超過13年。他的公司利用車輛數據解決交通問題,尤其是提高公共交通的效率。梅納德的最終目標是“通過提供可靠、可預測和更快速的公共交通,使更多城市擁有公平發展的機會。”
里克斯和梅納德都認為,減少交通擁堵的途徑是讓更多人使用公共交通,例如公交車、地鐵和輕軌系統等。公共交通是最安全的地面交通模式,所造成的人身傷害和死亡人數更少。公共交通能夠用更快的速度運送更多的乘客。
里克斯解釋說,大多數交通擁堵是由“低容量汽車”造成的,比如單人駕駛自用車。這些汽車的司機是人類;有些人行駛速度更快,有些人更慢;有些人經常變道,有些人會在交通燈變紅燈之前黃燈還在閃爍的時候突然停車。由于人類的行為模式存在差異,因此交通系統有一定的不可預測性。里克斯的工作主要是提高公共交通對通勤者的吸引力。
里克斯補充道:“當我們減少道路上的車輛數量時,就可以減少發生車禍的幾率。”
因此,梅納德開始研究將物聯網用于其云平臺,利用智能手機、汽車傳感器、公共交通日志和快遞車輛的數據,了解每天不同時段以及特殊活動期間的交通模式,例如本地體育館舉行體育比賽時。他表示,第一個障礙是從一個有已知信息的地方開始,而不是靠猜測;他解釋說,過去人們要花費幾個小時觀看視頻屏幕,才能夠開始估算接下來該怎么做。
他在加州圣何塞推出公司的平臺。過去三年,他一直與圣何塞市合作,對該市的公交路線進行優化,效率提升了20%,燃料消耗減少了14%,在十字路口的排放量減少了12%。利用每個交通燈的預測性預計到達時間,他的平臺通過優化公交路線和交通燈縮短了公交車站之間的行駛時間,可以確保公交車能夠盡可能高效運行,并避免造成交通中斷。他目前正在加州北部其他城市開展業務,包括灣區城鎮和薩克拉門托,以及太平洋西北部地區的俄勒岡州西雅圖和波特蘭。
梅納德還在研究自行車和行人出行。他表示,這兩種出行模式引起了許多公共交通部門的興趣和重視。他通過設計專用的、有路緣石保護的自行車道,以及與交通信號燈同步的自行車專用交通信號,以避免汽車與自行車碰撞,從而讓騎行變得更安全。對于行人,里克斯解釋稱,步行交通使用傳感器和自適應控制根據需求適時調整設置,這時候需要人工智能算法與實時數據進行交互。
在交通模式中應用人工智能技術,還能夠令緊急救援人員受益。梅納德利用機器學習分析救護車和消防車等應急車輛的數據,以提高車輛的速度。他指出,在許多城市環境中,交通擁堵和交通模式導致在關乎生死存亡的緊要關頭,緊急救援人員無法及時抵達現場或醫院。在加州薩克拉門托,他解決了這個問題。
他提到對全市所有利益相關者數據所做的分析,并表示:“無論白天還是黑夜,應急車輛最好可以在15分鐘之內抵達現場。”他將響應速度最慢的10%應急車輛的行駛速度提高了超過10英里/小時,使車輛抵達現場的時間縮短了70%。即便是響應速度最快的10%應急車輛,速度也提升了6英里/小時。
每一位單人駕駛自用車車主改為使用公共交通,公路上就減少了一輛導致擁堵的車輛。梅納德經常提醒人們,當他們坐在車里,陷入車流中時,周圍還有許多人跟他們一樣。如果他們改用共享車輛,比如高容量公共交通,他們就能夠加快出行速度。
但要鼓勵通勤者改變習慣總是充滿了挑戰,因此新的出行選擇應該足夠有吸引力,才可以激勵通勤者做出改變。里克斯說:“在乘坐公共交通時,你希望隨時都能夠有公交車可以及時將你運送到目的地。我們需要解決交通問題,讓公共交通成為一種具有吸引力的替代選擇。在這方面,我們依舊任重道遠。”(財富中文網)
翻譯:劉進龍
審校:汪皓
美國聯邦交通運輸管理局(Federal Transit Administration)的卡琳娜·里克斯說:“我從未遇到過真正喜歡交通的人。”
當然,像她一樣以減少交通擁堵為使命的專業人士除外。
里克斯對交通模式的關注成就了自己的事業。在加入美國聯邦交通運輸管理局擔任研究、創新和論證副局長之前,她曾經在賓夕法尼亞州的匹茲堡市擔任交通與基礎設施主任。她花了大量時間思考汽車、公共交通、公路和行人,以及如何讓交通變得更加順暢。
里克斯表示:“如果你在高峰期出行,整個交通系統已經滿負荷,只要一個小小的交通中斷就能夠引發巨大的問題。我的工作就是快速發現這些中斷事件,并迅速調整交通系統,以繞過它們繼續運行。”
里克斯希望優化的問題,將對所有人的出行產生影響,尤其是在城市。她解釋稱,擁堵是交通系統面臨的首要問題,并且這種狀況在大都市已經司空見慣。除此之外還有在特定時間會出現的各種變量,例如人類駕駛員和地理狀況等,這導致嘗試解決交通問題就像是面對一個令人瞠目結舌的謎題。
她表示,如果說有減少交通擁堵的簡單方法,那么問題應該在50年前就已經解決了。相反,她和政府部門以及Lyt等交通領域的初創公司,正在研究大量可用的交通數據,包括交通傳感器數據、共享出行數據甚至智能手機上的自行車和小型摩托車數據等,并根據這些數據決定如何讓人們安全快速地上班、回家和去食品雜貨店購物。
她們提出的解決方案需要使用人工智能和機器學習。
Lyt的創始人及首席執行官蒂姆·梅納德解釋說:“有許多任務,比如模式識別等,人并不比機器更擅長。人工智能是一項偉大的技術,因為你需要對系統進行全方位研究。你首先可以向人工智能提供不同信息,然后將人工智能納入交通系統,用于改變系統運行模式。”Lyt是一個軟件技術平臺,致力于為城市提供出行解決方案。
梅納德在創建Lyt之前,已經研究智能交通系統超過13年。他的公司利用車輛數據解決交通問題,尤其是提高公共交通的效率。梅納德的最終目標是“通過提供可靠、可預測和更快速的公共交通,使更多城市擁有公平發展的機會。”
里克斯和梅納德都認為,減少交通擁堵的途徑是讓更多人使用公共交通,例如公交車、地鐵和輕軌系統等。公共交通是最安全的地面交通模式,所造成的人身傷害和死亡人數更少。公共交通能夠用更快的速度運送更多的乘客。
里克斯解釋說,大多數交通擁堵是由“低容量汽車”造成的,比如單人駕駛自用車。這些汽車的司機是人類;有些人行駛速度更快,有些人更慢;有些人經常變道,有些人會在交通燈變紅燈之前黃燈還在閃爍的時候突然停車。由于人類的行為模式存在差異,因此交通系統有一定的不可預測性。里克斯的工作主要是提高公共交通對通勤者的吸引力。
里克斯補充道:“當我們減少道路上的車輛數量時,就可以減少發生車禍的幾率。”
因此,梅納德開始研究將物聯網用于其云平臺,利用智能手機、汽車傳感器、公共交通日志和快遞車輛的數據,了解每天不同時段以及特殊活動期間的交通模式,例如本地體育館舉行體育比賽時。他表示,第一個障礙是從一個有已知信息的地方開始,而不是靠猜測;他解釋說,過去人們要花費幾個小時觀看視頻屏幕,才能夠開始估算接下來該怎么做。
他在加州圣何塞推出公司的平臺。過去三年,他一直與圣何塞市合作,對該市的公交路線進行優化,效率提升了20%,燃料消耗減少了14%,在十字路口的排放量減少了12%。利用每個交通燈的預測性預計到達時間,他的平臺通過優化公交路線和交通燈縮短了公交車站之間的行駛時間,可以確保公交車能夠盡可能高效運行,并避免造成交通中斷。他目前正在加州北部其他城市開展業務,包括灣區城鎮和薩克拉門托,以及太平洋西北部地區的俄勒岡州西雅圖和波特蘭。
梅納德還在研究自行車和行人出行。他表示,這兩種出行模式引起了許多公共交通部門的興趣和重視。他通過設計專用的、有路緣石保護的自行車道,以及與交通信號燈同步的自行車專用交通信號,以避免汽車與自行車碰撞,從而讓騎行變得更安全。對于行人,里克斯解釋稱,步行交通使用傳感器和自適應控制根據需求適時調整設置,這時候需要人工智能算法與實時數據進行交互。
在交通模式中應用人工智能技術,還能夠令緊急救援人員受益。梅納德利用機器學習分析救護車和消防車等應急車輛的數據,以提高車輛的速度。他指出,在許多城市環境中,交通擁堵和交通模式導致在關乎生死存亡的緊要關頭,緊急救援人員無法及時抵達現場或醫院。在加州薩克拉門托,他解決了這個問題。
他提到對全市所有利益相關者數據所做的分析,并表示:“無論白天還是黑夜,應急車輛最好可以在15分鐘之內抵達現場。”他將響應速度最慢的10%應急車輛的行駛速度提高了超過10英里/小時,使車輛抵達現場的時間縮短了70%。即便是響應速度最快的10%應急車輛,速度也提升了6英里/小時。
每一位單人駕駛自用車車主改為使用公共交通,公路上就減少了一輛導致擁堵的車輛。梅納德經常提醒人們,當他們坐在車里,陷入車流中時,周圍還有許多人跟他們一樣。如果他們改用共享車輛,比如高容量公共交通,他們就能夠加快出行速度。
但要鼓勵通勤者改變習慣總是充滿了挑戰,因此新的出行選擇應該足夠有吸引力,才可以激勵通勤者做出改變。里克斯說:“在乘坐公共交通時,你希望隨時都能夠有公交車可以及時將你運送到目的地。我們需要解決交通問題,讓公共交通成為一種具有吸引力的替代選擇。在這方面,我們依舊任重道遠。”(財富中文網)
翻譯:劉進龍
審校:汪皓
“I haven’t met anyone that really loves traffic,” says Karina Ricks of the Federal Transit Administration.
Except, possibly, professionals like her who are tasked with reducing it.
Ricks has made her career out of caring about traffic patterns. Before her current role as the associate administrator for research, innovation, and demonstration at the FTA, she was the director of mobility and infrastructure for the City of Pittsburgh in Pennsylvania. She has spent countless hours thinking about cars, public transit, roads, and pedestrians—and how to make it all flow more smoothly.
“When you’re in the peak times for travel, when the system is so full, it only takes a small disruption to cause really big problems,” Ricks says. “The work is to quickly flag those disruptions and rapidly retool the system to operate around them.”
What Ricks aims to optimize affects anyone moving from point A to point B, especially in cities. She explained that congestion is the number one problem when it comes to traffic, and a common occurrence in metropolitan areas. Add to that the number of variables at any given time, including human operators of vehicles and geography, and it results in a mind-boggling puzzle to even attempt to solve.
If there were an easy way to reduce traffic, it would have been actioned in the past 50 years, she said. Instead, she, government organizations, and startups in the space, such as Lyt, are all looking at an immense amount of traffic data available—from traffic sensors to ride share data and even bike and scooter data from smartphones—and using it to inform decisions on how to get people to work, home, and the grocery store safely and quickly.
That solution involves artificial intelligence and machine learning.
“There are tasks that humans just aren’t good at that machinery is, and that’s recognizing patterns,” explains Tim Menard, founder and chief executive officer of Lyt, a software technology platform providing mobility solutions for cities. “A.I. is a great technology to use, because you’re looking at all parts of the system. You can start feeding it different information, and you can put that into a system that can make operational changes.”
Menard started Lyt after studying intelligent transportation systems for more than 13 years. His company uses vehicle data to solve traffic problems, especially when it comes to the efficiency of public transit options. For Menard, the end goal is to “make more cities equitable by making public transit reliable, predictable, and faster.”
Both Ricks and Menard believe that the way to reduce traffic is to get more people onto public transportation, such as buses, subways, and light rail systems. Public transportation is the safest surface transportation mode, with fewer injuries and fatalities. It’s also a speedier way to move a larger number of people.
Ricks explained that most of congestion is caused by “low-volume vehicles,” ie. single-occupant cars. Those drivers are human; some drive faster, some slower; some change lanes often, others stop abruptly when a traffic light flashes yellow before red. Because humans behave so differently, there is a level of unpredictability in the traffic system. Much of her work aims to make mass transit more enticing for commuters.
“You’re reducing the rate of crashes that might occur when you’re reducing the number of vehicles that are there,” Ricks added.
With that in mind, Menard started looking at the Internet of Things for his cloud platform, pulling data from smartphones, automotive sensors, public transportation logs, and delivery vehicles to understand traffic patterns at various times of the day as well as during special one-off events, such as a sports game at a local stadium. He said that the first hurdle was to operate from a place of known information rather than guessing; in the past, he explained, it took a human looking at a video screen for hours and hours to even begin to make an estimate on next steps.
He launched in San Jose, Calif., where for the past three years, he has collaborated with the city to optimize bus routes by 20%, thereby reducing fuel consumption by 14% and emissions at intersections by 12%. Using a predictive estimated time of arrival at each traffic light, his platform reduced the travel time between bus stops by optimizing bus lanes and traffic lights to ensure buses could move as effectively as possible without disrupting other traffic. He now works in other northern California cities, including additional Bay Area towns and Sacramento, as well as in the Pacific Northwest: Seattle and Portland, Ore.
Menard is also looking at bicycle and pedestrian traffic, something he says is of interest and priority to many transit authorities. He has worked to make bicycling safer by creating dedicated, curbed bike lanes with their own traffic signals synced with those of vehicle traffic to help avoid car-bicycle collisions. For pedestrians, Ricks explained that foot traffic uses sensors and adaptive controls to adjust settings in real time based on needs—a moment when the A.I. algorithm and real time data intersect.
Another benefit of A.I. technology for traffic patterns surrounds first responders. Menard employed machine learning to analyze data from emergency vehicles like ambulances and fire trucks to improve speed. He noted that in many urban environments, congestion and traffic patterns prohibit first responders from promptly arriving on scene or to a hospital with a life-or-death situation. In Sacramento, Calif., he tackled this problem.
“It was literally night and day better in under 15 minutes,” he said of taking a look at amassed data from all the relevant stakeholders in the city. There, he improved the slowest 10% of the emergency vehicles by more than 10 miles per hour, allowing them to arrive 70% faster on any response. Even the performing top 10% of vehicles saw an improvement of 6 miles per hour.
For every single-occupant car that swaps to public transit, there is one less vehicle on the road causing congestion. Menard regularly reminds people that when they are sitting in their car, stuck in traffic, they are surrounded by many other people doing the exact same thing. If they traded to a shared vehicle—a high-occupancy mode of transit—they may speed along very quickly.
But it’s always challenging to inspire commuters to change habits, so the new option needs to be compelling enough to motivate them to adjust the way they operate. “What you want in a transit system is to show up now [and] there’s a bus ready to get you in a timely fashion,” Ricks said. “We need to address traffic in order for transit to be that attractive alternative. There’s quite a bit of work to still do.”