忘掉駕校吧。在不久的將來,教汽車開車比教人開車更有用。
如果不留意,可能意識不到人工智能的存在,但人工智能正在上海和蘇州的大街上讓汽車教汽車如果自動駕駛,這是中國最大的汽車制造商上汽集團(SAIC Motor)和總部位于蘇州的人工智能公司Momenta的合作成果。
從2021年12月到2022年3月,這兩家公司在上述兩個特大城市共投放了60輛無人駕駛出租車,以檢驗這項技術的使用前景。已經有數千名中國乘客通過手機叫車搭乘了這些無人駕駛出租車出行,車內仍配有人類操作員,萬一出現緊急情況可以控制車輛。Momenta表示,80%的乘客在初體驗后至少又約過兩次他們的車,證明了這項服務的“巨大潛力”。
現在,該公司正在努力向通用汽車(General Motors)、梅賽德斯-奔馳(Mercedes-Benz)和其他數十家汽車制造商推廣這項技術,目標是在未來幾年內推出乘用車。但Momenta的首席執行官曹旭東表示,首先,必須要積累1000億英里的駕駛數據。
包括Cruise和Argo AI在內,美國和世界各地有幾十家公司都在開發下一代自動駕駛汽車系統。但Momenta的戰略定位或許可以更快地實現這一目標。和其他公司一樣,Momenta的機器學習系統也會對人類駕駛員成百上千萬次的操作進行觀察記錄,但它沒有以此為基礎編制駕駛規則代碼,而是讓這些數據直接指導其他汽車。
與競爭對手相比,該公司還有兩個關鍵優勢:可以獲得高清的中國公路圖,與高銷量汽車制造商達成了重要合作關系,這些車企本就已經在收集大量汽車駕駛數據。通用汽車、梅賽德斯-奔馳、豐田(Toyota)、汽車零部件供應商博世(Bosch)等公司已向Momenta投資超過10億美元,推動自動駕駛的加快發展。
“解決可擴展的自主問題面臨巨大挑戰。“曹旭東向本刊表示,“客戶一旦看到我們能夠為大規模生產程序開發算法,就能理解我們的能力。”
傳統的基于規則的機器學習方法的編碼邏輯是讓汽車對特定刺激做出反應。“如果發生了X,就做Y動作。”密歇根大學機械工程副教授拉姆·瓦蘇代萬說,“如果汽車攝像頭看到停車標志,就停車。”開發人員將各種操作規則編寫到軟件中,比如改變車道時該做什么,如何在靜止的車輛周圍移動等等。例如,當汽車左轉時,汽車的內置程序會先計算其軌跡,汽車會相應減速。
但只要開過車的人都知道,路況并不總是這么直來直去的。舉一個經典例子:一個小孩突然沖出來追球,司機要決定是剎車還是轉向。大多數公司預先設定的策略都是變道,但Momenta的數據會教會汽車考慮其他因素,比如天氣和時間。
這就是為什么Momenta放棄了基于規則的算法,從零開始訓練汽車。“Momenta做的是真正的人工智能,”瓦蘇代萬說。
“數據驅動”的端到端學習方法實現起來要困難得多,成本也高得多。該公司合作伙伴生產的汽車在路上行駛的數百萬英里可以幫助汽車學習在各種環境中駕駛,與已經投入了數十億美元用于大規模生產自有自動駕駛汽車的車企合作是生產如此大量數據的唯一方法。
Momenta方法的優勢在于它可以處理更復雜的情況和細微差別。“你怎么能確定你已經預先把每一條規則都設定好了?”瓦蘇代萬說。“難點在于你需要大量標注過的數據,才能為每一種駕駛場景編制規則。即使這樣,也仍然可能存在某種你沒有編進自動駕駛堆棧中的場景。”
自動駕駛市場正在迅速增長。Momenta預計,到2025年,將有近6000萬輛汽車配備2級或3級高級駕駛員輔助系統,這是進階到全自動駕駛汽車的跳板。
今年3月,美國聯邦監管機構規定,制造商不再需要為全自動駕駛汽車配備方向盤、制動踏板或某些其他手動駕駛控制裝置。這為美國汽車制造商開始在公共道路上大規模測試自動駕駛車型鋪平了道路。
通用汽車旗下的Cruise和Alphabet旗下的Waymo拿到了加州機動車輛管理局(Department of Motor Vehicles)的許可,可以在有限條件下在公共道路上運營無人駕駛出租車。特斯拉首席執行官埃隆·馬斯克在今年4月的季度財報電話會議上表示,該公司計劃在2024年前開發一款不配備方向盤或制動踏板的自動駕駛出租車。馬斯克說:“我認為這絕對會推動特斯拉大幅增長。”(財富中文網)
譯者:Agatha
忘掉駕校吧。在不久的將來,教汽車開車比教人開車更有用。
如果不留意,可能意識不到人工智能的存在,但人工智能正在上海和蘇州的大街上讓汽車教汽車如果自動駕駛,這是中國最大的汽車制造商上汽集團(SAIC Motor)和總部位于蘇州的人工智能公司Momenta的合作成果。
從2021年12月到2022年3月,這兩家公司在上述兩個特大城市共投放了60輛無人駕駛出租車,以檢驗這項技術的使用前景。已經有數千名中國乘客通過手機叫車搭乘了這些無人駕駛出租車出行,車內仍配有人類操作員,萬一出現緊急情況可以控制車輛。Momenta表示,80%的乘客在初體驗后至少又約過兩次他們的車,證明了這項服務的“巨大潛力”。
現在,該公司正在努力向通用汽車(General Motors)、梅賽德斯-奔馳(Mercedes-Benz)和其他數十家汽車制造商推廣這項技術,目標是在未來幾年內推出乘用車。但Momenta的首席執行官曹旭東表示,首先,必須要積累1000億英里的駕駛數據。
包括Cruise和Argo AI在內,美國和世界各地有幾十家公司都在開發下一代自動駕駛汽車系統。但Momenta的戰略定位或許可以更快地實現這一目標。和其他公司一樣,Momenta的機器學習系統也會對人類駕駛員成百上千萬次的操作進行觀察記錄,但它沒有以此為基礎編制駕駛規則代碼,而是讓這些數據直接指導其他汽車。
與競爭對手相比,該公司還有兩個關鍵優勢:可以獲得高清的中國公路圖,與高銷量汽車制造商達成了重要合作關系,這些車企本就已經在收集大量汽車駕駛數據。通用汽車、梅賽德斯-奔馳、豐田(Toyota)、汽車零部件供應商博世(Bosch)等公司已向Momenta投資超過10億美元,推動自動駕駛的加快發展。
“解決可擴展的自主問題面臨巨大挑戰。“曹旭東向本刊表示,“客戶一旦看到我們能夠為大規模生產程序開發算法,就能理解我們的能力。”
傳統的基于規則的機器學習方法的編碼邏輯是讓汽車對特定刺激做出反應。“如果發生了X,就做Y動作。”密歇根大學機械工程副教授拉姆·瓦蘇代萬說,“如果汽車攝像頭看到停車標志,就停車。”開發人員將各種操作規則編寫到軟件中,比如改變車道時該做什么,如何在靜止的車輛周圍移動等等。例如,當汽車左轉時,汽車的內置程序會先計算其軌跡,汽車會相應減速。
但只要開過車的人都知道,路況并不總是這么直來直去的。舉一個經典例子:一個小孩突然沖出來追球,司機要決定是剎車還是轉向。大多數公司預先設定的策略都是變道,但Momenta的數據會教會汽車考慮其他因素,比如天氣和時間。
這就是為什么Momenta放棄了基于規則的算法,從零開始訓練汽車。“Momenta做的是真正的人工智能,”瓦蘇代萬說。
“數據驅動”的端到端學習方法實現起來要困難得多,成本也高得多。該公司合作伙伴生產的汽車在路上行駛的數百萬英里可以幫助汽車學習在各種環境中駕駛,與已經投入了數十億美元用于大規模生產自有自動駕駛汽車的車企合作是生產如此大量數據的唯一方法。
Momenta方法的優勢在于它可以處理更復雜的情況和細微差別。“你怎么能確定你已經預先把每一條規則都設定好了?”瓦蘇代萬說。“難點在于你需要大量標注過的數據,才能為每一種駕駛場景編制規則。即使這樣,也仍然可能存在某種你沒有編進自動駕駛堆棧中的場景。”
自動駕駛市場正在迅速增長。Momenta預計,到2025年,將有近6000萬輛汽車配備2級或3級高級駕駛員輔助系統,這是進階到全自動駕駛汽車的跳板。
今年3月,美國聯邦監管機構規定,制造商不再需要為全自動駕駛汽車配備方向盤、制動踏板或某些其他手動駕駛控制裝置。這為美國汽車制造商開始在公共道路上大規模測試自動駕駛車型鋪平了道路。
通用汽車旗下的Cruise和Alphabet旗下的Waymo拿到了加州機動車輛管理局(Department of Motor Vehicles)的許可,可以在有限條件下在公共道路上運營無人駕駛出租車。特斯拉首席執行官埃隆·馬斯克在今年4月的季度財報電話會議上表示,該公司計劃在2024年前開發一款不配備方向盤或制動踏板的自動駕駛出租車。馬斯克說:“我認為這絕對會推動特斯拉大幅增長。”(財富中文網)
譯者:Agatha
Forget driver’s ed. Soon teaching a car to drive will be more effective than teaching a human.
Artificial intelligence may be invisible to the unsuspecting eye, but it’s already at work on city streets in Shanghai and Suzhou, where cars are teaching each other how to drive themselves, thanks to a partnership between SAIC Motor, China’s largest automaker, and Suzhou-based artificial intelligence company Momenta.
Together the companies deployed 60 robotaxis across the two megacities from December 2021 through March 2022 to validate the technology for use in the cars of the future. Using a smartphone app, thousands of city dwellers in China completed their errands by summoning the robotaxis staffed with human operators who could take control in a potential emergency. Momenta says that 80% of riders used the app at least twice after their initial trial, demonstrating the “vast potential” of the service.
Now the company is working toward scaling its technology for General Motors, Mercedes-Benz, and dozens of other automakers with the goal of launching inside passenger vehicles within the next several years. But first, Momenta CEO Cao Xudong says, it must amass 100 billion miles of driving data.
Dozens of companies in the U.S. and around the world, including Cruise and Argo AI, are developing next-generation systems for autonomous cars. But Momenta’s strategy may be positioned to bring it to fruition faster. Like others, its machine learning observes and clocks millions of maneuvers made by human drivers, but instead of using those actions as the basis for hardcoded driving rules, Momenta lets the data instruct the other cars directly.
The company also has two key advantages over competitors: access to China’s high-definition road maps and significant partnerships with mass-market carmakers who are already collecting data from tens of thousands of cars on the road. General Motors, Mercedes-Benz, Toyota, auto parts supplier Bosch, and others have invested more than $1 billion in Momenta to accelerate the development of autonomous driving.
“The challenge of solving scalable autonomy is massive,” Xudong tells Fortune. “When customers see we are able to develop algorithms for mass production programs, they understand our capability.”
The traditional rules-based approach to machine learning programs the cars to respond to a stimulus with a specific action. “If X happens, you do Y,” says Ram Vasudevan, associate professor of mechanical engineering at the University of Michigan. “If the car’s camera reads a stop sign, you stop.” Developers hardcode the software with rules for various maneuvers such as what to do when changing lanes or how to move around a stationary vehicle. When making a lefthand turn, for instance, the car is programmed to precompute its trajectory and slow down accordingly.
But anyone who has driven a car knows that traffic situations aren’t always so straightforward. Take the classic example: A child runs out into the street in pursuit of a ball, leaving the driver to decide whether to brake or swerve. Most companies pre-program a lane-change maneuver, but Momenta’s data teaches the car to consider other factors, such as the weather and time of day.
That’s why Momenta forgoes rules-based algorithms to train cars from scratch. “What Momenta is doing is truly artificial intelligence,” Vasudevan says.
The “data-driven,” end-to-end learning approach is much harder and more expensive to pull off. The millions of miles its partners log on the road help cars learn to drive in a range of environments, and the only way to generate such volumes of data is to collaborate with automakers who are already investing billions of dollars toward mass producing their own autonomous vehicles.
The advantage of Momenta’s approach is that it can handle more complex situations and nuances. “How do you know that you’ve preprogrammed all the rules out there?” Vasudevan says. “The challenge is that you’re going to need lots of labeled data in order to create a rule for every driving scenario. Even after all of that, there may be a situation that you haven’t programmed into your autonomous stack.”
The market for autonomous driving is growing rapidly. By 2025, Momenta expects that nearly 60 million vehicles will come equipped with Level 2 or 3 advanced driver assistance systems, the stepping stone to fully self-driving cars.
In the U.S., federal regulators ruled in March that manufacturers no longer need to equip fully autonomous vehicles with steering wheels, brake pedals, or certain other manual driving controls. This paves the way for American automakers to begin testing their models at scale on public roads.
GM-owned Cruise and Alphabet’s Waymo received permits from the California Department of Motor Vehicles to operate robotaxis on public roads under limited conditions, and Tesla CEO Elon Musk said during the company’s quarterly earnings call in April that the automaker plans to develop a robotaxi without a steering wheel or pedals by 2024. "I think that that really will be a massive driver of Tesla's growth,” Musk said.