學習,還是不學習?
從一開始,人們就大肆吹噓人工智能的超凡能力,即通過學習它研究的數據而不斷變好——正是這一特性使人工智能成為一項獨特的技術。這種良性循環可能導致人工智能的行為總是無法預測,就像微軟(Microsoft)2016年推出的聊天機器人Tay所示;或者正如亞馬遜(Amazon)使用人工智能篩選求職簡歷時生動展示的那樣,它會導致可能引發公平擔憂的結果。人工智能系統可能在某一天做出一項決定,然后從隨后提供給它的數據中學習,并在第二天得出一個迥然不同的決定。這就是為什么美國食品與藥品管理局(Food and Drug Administration)等監管機構只批準那些在使用過程中不會演變的算法。
同樣,企業也需要決定是否允許自家的人工智能系統實時學習。遺憾的是,不允許人工智能持續學習,將迫使企業放棄該技術的一大關鍵好處——在某些情況下,它能夠隨著時間的推移表現得更好。在其他情況下,企業需要在風險水平和算法準確性之間進行權衡,而如果企業不允許持續學習,就會妨礙這種準確性的形成。
不斷演變的人工智能系統也會增加運營的復雜性,因為同樣的人工智能嵌入式產品或服務將在不同國家以不同方式運行。每個國家在監管法規和社會期望方面的細微差異將使得這些運營挑戰變得更加復雜。企業將不得不使用當地數據訓練其人工智能,并根據當地法規進行管理。而這勢必會限制人工智能的擴展能力。
此外,企業必須將人工智能視為一個需要謹慎管理的應用組合。它們將不得不開發“哨兵”流程來監控這一組合,不斷確保它公平、安全和高效運作。組織將不得不頻繁測試人工智能系統的輸出,而這無疑將增加成本。例如,紐約市在2017年通過立法成立了一個工作組,專門就自動決策系統的信息應該如何分享給公眾,以及公共機構應該如何應對人們可能受到自動決策系統傷害的情況提供建議。
為人工智能的決定負責
另一個關鍵的差異化因素是人工智能做出復雜決定的能力,例如,在網上向誰推送哪些廣告,或者是否給予基于人臉識別的訪問權限。責任與決策能力攜手并進。迄今為止,那些按照“負責任的人工智能”原則(Responsible A.I.)行事的企業和其他組織,專注于確保基于人工智能的決定對所有利益相關者——消費者、雇員、股東和其他利益相關者——一視同仁。如果人工智能算法待人不公,企業就會像蘋果公司那樣面臨法律和聲譽風險。它們需要理解其算法可能對人類產生的影響,甚至在某些情況下選擇不使用人工智能。隨著人工智能系統不斷擴展,這些關切將會加劇;就平均而言,一種算法可能是公平的,但在特定的地理環境下仍然可能是不公平的,因為當地消費者的行為和態度可能不符合均值,因此可能沒有反映在企業對算法的訓練中。
企業別無選擇,只能開發流程、角色和功能,以確保人工智能系統是公平和負責任的。一些機構,比如聯邦住房貸款抵押公司(Federal Home Loan Mortgage Corporation,也就是人們熟知的房地美公司),已經任命了人工智能倫理官,并建立了人工智能治理結構,以及諸如可追溯協議和多樣性訓練這類流程來應對這一挑戰。這是朝著正確方向邁出的一小步。此外,這些先行者正在建立審計流程,并開發監控工具來確保人工智能系統的公平運行。
問責制要求企業解釋為什么它們的算法會做出這樣的決定。這種“可解釋性”要求將迫使企業做出取舍。相對容易解釋的算法通常不如所謂的“黑匣子算法”準確。有鑒于此,如果企業只使用前者,就會限制人工智能的能力和質量。考慮到企業高管將不得不在“可解釋性”和準確性之間進行權衡,這勢必會在全球范圍內創造一種不平等的競爭環境,因為市場法規和社會期望因國別而異。
舉例來說,螞蟻金服結合了阿里巴巴生態系統中數千個數據源的輸入,為中國的借款人制定信用評級。這個流程使得任何人,甚至是監管機構,都難以理解這些算法的決策方式。盡管阿里巴巴的系統足以讓該公司在短短幾分鐘內批準貸款,但它可能無法在中國以外使用同樣的系統,特別是在那些無論是監管法規,還是社會期望都要求更高程度的“可解釋性”的經濟體。因此,人工智能公司究竟可以瞄準哪些市場,將在很大程度上受制于監管法規,這將對企業戰略產生重大影響。事實上,在2019年的《通用數據隱私條例》(General Data Privacy Regulation)頒布后,一些公司,比如游戲開發商Uber Entertainment,選擇遠離歐盟。
隨著越來越多的政府頒布人工智能的使用規則,企業在部署人工智能之前必須考慮一些關鍵問題。它們必須捫心自問:
* 我們應該在多大程度上差異化我們的產品或服務,以適應不同地區在人工智能法規和市場預期方面的差異?
* 在考慮了新的監管格局后,我們是否還應該致力于為全球所有市場提供服務?
* 如果人工智能業務的去中心化是大勢所趨,我們是否應該建立一個中央組織來領導,或者至少連接和共享數據、算法及最佳實踐?
* 考慮到人工智能法規和市場預期,我們將需要哪些新角色和組織能力,以確保我們的戰略和執行相一致?我們將如何聘用或重新培訓人才來獲得這些能力?
* 我們的戰略視野是否適當,能否將我們應對不斷變化的技術和監管環境的短期反應與我們的長期人工智能愿景結合起來?
隨著人工智能在企業內部和外部流程中的應用變得日益普遍,利益相關者對公平、安全和可信賴的人工智能的期望值不斷攀升,企業必然會遭遇人與機器的沖突。首席執行官們越早認識到使用人工智能系統的價值-風險權衡,他們就越可以在一個由人工智能驅動的世界中,更好地應對監管法規和社會期望。(財富中文網)
本文作者范史華(Fran?ois Candelon)是波士頓咨詢公司(Boston Consulting Group)的董事總經理、高級合伙人,并兼任波士頓咨詢公司亨德森研究所(BCG Henderson Institute)的全球董事。西奧多羅斯·葉夫根尼奧是歐洲工商管理學院(INSEAD)的決策科學和技術管理學教授,專攻人工智能和商業數據分析研究。
譯者:任文科
兩年前,在蘋果公司(Apple)還沒有正式推出蘋果信用卡(Apple Card)的時候,就有很多人在討論,這張不收費的信用卡將如何助力這家科技巨頭進軍金融服務行業。但現如今,當人們討論蘋果信用卡的時候,那經常是因為蘋果的人工智能算法出現了故障——該公司用這種算法來確定準持卡人的信用額度。
2019年11月,一名丹麥人在推特上發文稱,雖然他和太太使用相同的財務信息申請蘋果信用卡,但他獲得的信用額度足足是妻子的20倍——即使正如他承認的那樣,他妻子的信用評分其實更高。火上澆油的是,就連蘋果公司的聯合創始人史蒂夫·沃茲尼亞克也聲稱,他的太太遇到了同樣的事情。蘋果信用卡于2019年8月正式推出。到2020年年初,估計有310萬美國人持有該卡。所以,這個問題很可能影響了數以萬計的女性。紛至沓來的投訴促使紐約州金融服務管理局(New York Department of Financial Services)展開調查。盡管該機構最近洗脫了這家數字巨頭的性別歧視罪名,但這是在蘋果悄悄地將太太們的信用額度提升到與其丈夫相匹配的水平之后才發生的事情。
隨著企業開始大規模部署人工智能,人們的關注點正在日益從利用這種技術創造和捕獲價值,轉向使用人工智能系統所帶來的固有風險。諸如人工智能事件數據庫(Artificial Intelligence Incident Database)這類監管機構,已經記錄了數百起與人工智能相關的投訴——從學生考試的可疑評分,到招聘流程對算法的不當使用,再到醫療系統對患者的差別對待,不一而足。結果就是,企業很快就不得不遵守多個國家的監管新規。這些法規旨在確保人工智能系統是值得信賴、安全、強大且公平的。在這方面,歐盟(European Union)再次引領潮流,去年在其《人工智能白皮書:追求卓越和信任的歐洲之道》(White Paper on Artificial Intelligence: A European Approach to Excellence and Trust)中概述了一個框架,并在2021年4月提出了一個法律框架提案。
企業必須學會應對人工智能風險,不僅因為這將成為一項監管要求,還因為利益相關方期望它們這樣做。根據經濟學人智庫(Economist Intelligence Unit)最近的一項研究,多達60%的高管表示,出于責任方面的擔憂,他們的組織去年決定不與人工智能服務供應商合作。為了有效地管理人工智能,企業必須把握監管法規和社會期望對其使用這項技術的影響,同時銘記該技術獨有的特性。我們最近在《哈佛商業評論》(Harvard business Review)撰文詳細探討了這個問題。事實上,搞清楚如何平衡使用人工智能的回報和風險,很可能成為一項新的、具有可持續性的競爭優勢。
學習,還是不學習?
從一開始,人們就大肆吹噓人工智能的超凡能力,即通過學習它研究的數據而不斷變好——正是這一特性使人工智能成為一項獨特的技術。這種良性循環可能導致人工智能的行為總是無法預測,就像微軟(Microsoft)2016年推出的聊天機器人Tay所示;或者正如亞馬遜(Amazon)使用人工智能篩選求職簡歷時生動展示的那樣,它會導致可能引發公平擔憂的結果。人工智能系統可能在某一天做出一項決定,然后從隨后提供給它的數據中學習,并在第二天得出一個迥然不同的決定。這就是為什么美國食品與藥品管理局(Food and Drug Administration)等監管機構只批準那些在使用過程中不會演變的算法。
同樣,企業也需要決定是否允許自家的人工智能系統實時學習。遺憾的是,不允許人工智能持續學習,將迫使企業放棄該技術的一大關鍵好處——在某些情況下,它能夠隨著時間的推移表現得更好。在其他情況下,企業需要在風險水平和算法準確性之間進行權衡,而如果企業不允許持續學習,就會妨礙這種準確性的形成。
不斷演變的人工智能系統也會增加運營的復雜性,因為同樣的人工智能嵌入式產品或服務將在不同國家以不同方式運行。每個國家在監管法規和社會期望方面的細微差異將使得這些運營挑戰變得更加復雜。企業將不得不使用當地數據訓練其人工智能,并根據當地法規進行管理。而這勢必會限制人工智能的擴展能力。
此外,企業必須將人工智能視為一個需要謹慎管理的應用組合。它們將不得不開發“哨兵”流程來監控這一組合,不斷確保它公平、安全和高效運作。組織將不得不頻繁測試人工智能系統的輸出,而這無疑將增加成本。例如,紐約市在2017年通過立法成立了一個工作組,專門就自動決策系統的信息應該如何分享給公眾,以及公共機構應該如何應對人們可能受到自動決策系統傷害的情況提供建議。
為人工智能的決定負責
另一個關鍵的差異化因素是人工智能做出復雜決定的能力,例如,在網上向誰推送哪些廣告,或者是否給予基于人臉識別的訪問權限。責任與決策能力攜手并進。迄今為止,那些按照“負責任的人工智能”原則(Responsible A.I.)行事的企業和其他組織,專注于確保基于人工智能的決定對所有利益相關者——消費者、雇員、股東和其他利益相關者——一視同仁。如果人工智能算法待人不公,企業就會像蘋果公司那樣面臨法律和聲譽風險。它們需要理解其算法可能對人類產生的影響,甚至在某些情況下選擇不使用人工智能。隨著人工智能系統不斷擴展,這些關切將會加劇;就平均而言,一種算法可能是公平的,但在特定的地理環境下仍然可能是不公平的,因為當地消費者的行為和態度可能不符合均值,因此可能沒有反映在企業對算法的訓練中。
企業別無選擇,只能開發流程、角色和功能,以確保人工智能系統是公平和負責任的。一些機構,比如聯邦住房貸款抵押公司(Federal Home Loan Mortgage Corporation,也就是人們熟知的房地美公司),已經任命了人工智能倫理官,并建立了人工智能治理結構,以及諸如可追溯協議和多樣性訓練這類流程來應對這一挑戰。這是朝著正確方向邁出的一小步。此外,這些先行者正在建立審計流程,并開發監控工具來確保人工智能系統的公平運行。
問責制要求企業解釋為什么它們的算法會做出這樣的決定。這種“可解釋性”要求將迫使企業做出取舍。相對容易解釋的算法通常不如所謂的“黑匣子算法”準確。有鑒于此,如果企業只使用前者,就會限制人工智能的能力和質量。考慮到企業高管將不得不在“可解釋性”和準確性之間進行權衡,這勢必會在全球范圍內創造一種不平等的競爭環境,因為市場法規和社會期望因國別而異。
舉例來說,螞蟻金服結合了阿里巴巴生態系統中數千個數據源的輸入,為中國的借款人制定信用評級。這個流程使得任何人,甚至是監管機構,都難以理解這些算法的決策方式。盡管阿里巴巴的系統足以讓該公司在短短幾分鐘內批準貸款,但它可能無法在中國以外使用同樣的系統,特別是在那些無論是監管法規,還是社會期望都要求更高程度的“可解釋性”的經濟體。因此,人工智能公司究竟可以瞄準哪些市場,將在很大程度上受制于監管法規,這將對企業戰略產生重大影響。事實上,在2019年的《通用數據隱私條例》(General Data Privacy Regulation)頒布后,一些公司,比如游戲開發商Uber Entertainment,選擇遠離歐盟。
隨著越來越多的政府頒布人工智能的使用規則,企業在部署人工智能之前必須考慮一些關鍵問題。它們必須捫心自問:
* 我們應該在多大程度上差異化我們的產品或服務,以適應不同地區在人工智能法規和市場預期方面的差異?
* 在考慮了新的監管格局后,我們是否還應該致力于為全球所有市場提供服務?
* 如果人工智能業務的去中心化是大勢所趨,我們是否應該建立一個中央組織來領導,或者至少連接和共享數據、算法及最佳實踐?
* 考慮到人工智能法規和市場預期,我們將需要哪些新角色和組織能力,以確保我們的戰略和執行相一致?我們將如何聘用或重新培訓人才來獲得這些能力?
* 我們的戰略視野是否適當,能否將我們應對不斷變化的技術和監管環境的短期反應與我們的長期人工智能愿景結合起來?
隨著人工智能在企業內部和外部流程中的應用變得日益普遍,利益相關者對公平、安全和可信賴的人工智能的期望值不斷攀升,企業必然會遭遇人與機器的沖突。首席執行官們越早認識到使用人工智能系統的價值-風險權衡,他們就越可以在一個由人工智能驅動的世界中,更好地應對監管法規和社會期望。(財富中文網)
本文作者范史華(Fran?ois Candelon)是波士頓咨詢公司(Boston Consulting Group)的董事總經理、高級合伙人,并兼任波士頓咨詢公司亨德森研究所(BCG Henderson Institute)的全球董事。西奧多羅斯·葉夫根尼奧是歐洲工商管理學院(INSEAD)的決策科學和技術管理學教授,專攻人工智能和商業數據分析研究。
譯者:任文科
Two years ago, before Apple’s launch of the Apple Card, there was much discussion about how the no-fee credit card would enable the tech giant to storm into the financial services business. However, when people discuss the Apple Card today, it’s in part because of the glitches in Apple’s artificial intelligence algorithms that determine wannabe cardholders’ credit limits.
In November 2019, a Dane tweeted that while his wife and he had both applied for the Apple Card with the same financial information, he was awarded a credit limit 20 times higher than that of his wife—even though, as he admitted, his wife had a higher credit score. Adding fuel to the fire, Apple’s cofounder, Steve Wozniak, claimed that the same thing had happened to his wife too. The card had been launched in August 2019, and it was estimated that there were 3.1 million Apple Card credit card holders in the U.S. at the beginning of 2020, so this issue may well have affected tens of thousands of women. A spate of complaints resulted in a New York Department of Financial Services investigation, which recently cleared Apple of gender-based discrimination, but only after the digital giant quietly raised wives’ credit limits to match those of their husbands.
As business sets about deploying A.I. at scale, the focus is increasingly shifting from the use of the technology to create and capture value to the inherent risks that A.I.-based systems entail. Watchdog bodies such as the Artificial Intelligence Incident Database have already documented hundreds of cases of A.I.-related complaints, ranging from the questionable scoring of students’ exams to the inappropriate use of algorithms in recruiting and the differential treatment of patients by health care systems. As a result, companies will soon have to comply with regulations in several countries that aim to ensure that A.I.-based systems are trustworthy, safe, robust, and fair. Once again, the European Union is leading the way, outlining a framework last year in its White Paper on Artificial Intelligence: A European Approach to Excellence and Trust, as well as its proposal for a legal framework in April 2021.
Companies must learn to tackle A.I. risks not only because it will be a regulatory requirement, but because stakeholders will expect them to do so. As many as 60% of executives reported that their organizations decided against working with A.I. service providers last year due to responsibility-related concerns, according to a recent Economist Intelligence Unit study. To effectively manage A.I., business must grasp the implications of regulations and social expectations on its use even while keeping in mind the technology’s unique characteristics, which we’ve discussed at length in our recent Harvard Business Review article. Indeed, figuring out how to balance the rewards from using A.I. with the risks could well prove to be a new, and sustainable, source of competitive advantage.
To learn, or not to learn?
At the outset, consider A.I.’s much-vaunted ability to continuously become better by learning from the data it studies—a characteristic that makes A.I. a unique technology. The virtuous cycle can lead to A.I. behavior that cannot always be anticipated, as the example of Microsoft’s chatbot, Tay, showed in 2016, or to outcomes that may raise concerns of fairness, as Amazon’s use of A.I. to screen résumés vividly demonstrated. An A.I. system can make one decision one day, and, learning from the data it is subsequently fed, could arrive at a vastly different decision the very next day. That’s why U.S. regulators, such as the Food and Drug Administration, approve only algorithms that don’t evolve during their use.
Similarly, companies will need to decide whether or not to allow their A.I. systems to learn in real time. Not allowing continuous learning will, sadly, result in companies having to forgo one of the key benefits of A.I., viz its ability to perform better over time, in some cases. In others, business will need to balance the tradeoffs between risk levels and algorithmic accuracy, which will be hampered if companies don’t allow continuous learning.
Ever-evolving A.I. systems also generate operational complexities because the same A.I.-embedded product or service will work differently in each country. These operational challenges will be compounded by the subtle variations in regulations and social expectations in each nation. Companies will have to train their A.I. using local data and manage them according to local regulations. That is bound to limit A.I.’s ability to scale.
In addition, companies will have to treat their A.I. as a portfolio of applications that needs careful management. They will have to develop sentinel processes to monitor the portfolio, continuously ensuring its fair, safe, and robust functioning. Organizations will have to frequently test the output of A.I. systems, which will add to costs. For example, a 2017 New York City law mandated the creation of a task force to provide recommendations on how information on automated decision systems should be shared with the public, and how public agencies should address instances where people could be harmed by automated decision systems.
Taking responsibility for A.I.’s decisions
Another key differentiator is A.I.’s ability to make complex decisions, such as which ads to serve up online to whom or whether to grant facial recognition–based access. Responsibility comes hand in hand with the ability to make decisions. So far, companies and other organizations acting according to the principles of Responsible A.I. have focused on ensuring that A.I.-based decisions treat all stakeholders—consumers, employees, shareholders, stakeholders—fairly. If A.I. algorithms treat people unfairly, companies will face legal and reputational risks, as Apple did. They need to understand the possible impact that their algorithms can have on humans, and even choose not to use A.I. in some contexts. These concerns will be exacerbated as A.I. systems scale; an algorithm may be fair, on average, but may still be unfair in specific geographical contexts because local consumer behavior and attitudes may not correspond to the average, and thus may not be reflected in the algorithm’s training.
Companies have no option but to develop processes, roles, and functions to ensure that A.I. systems are fair and responsible. Some, like the Federal Home Loan Mortgage Corporation (Freddie Mac), have already appointed A.I. ethics officers and set up A.I. governance structures and processes—such as traceability protocols and diversity training—to tackle this challenge, which are small steps in the right direction. In addition, the pioneers are setting up auditing processes and developing monitoring tools to ensure the fair functioning of A.I. systems.
Accountability requires companies to explain why their algorithms make decisions the way they do. This idea of “explainability” will force companies to make tradeoffs. Easier-to-explain algorithms are usually less accurate than so-called black box algorithms, so if companies use only the former, it will limit the A.I.’s abilities and quality. Because executives will have to make tradeoffs between explainability and accuracy, it’s bound to create an unequal playing field across the globe since market regulations and social expectations will differ across nations.
By way of illustration: Ant Financial combines thousands of inputs from data sources in the Alibaba ecosystem to develop credit ratings for borrowers in China. The process makes it difficult for anyone, even regulators, to understand how the algorithms make decisions. While Alibaba’s systems allow the company to approve loans within minutes, it may not be able to use the same system outside China, especially in economies with regulations and expectations that demand a higher degree of explainability. Consequently, A.I. regulations will limit the markets that A.I.-driven companies can target, which has major strategy implications. In fact, a few companies, such as game developer Uber Entertainment, chose to stay away from the EU after the enactment of the General Data Privacy Regulation in 2019.
As more governments unveil rules about the use of A.I., companies will need to consider some key questions before deploying A.I. They must ask themselves:
* To what extent should we differentiate our product or service offering to follow local differences in A.I. regulations and market expectations?
* Should we still serve all these markets worldwide after accounting for the new regulatory landscape?
* If decentralizing A.I. operations is essential, should we set up a central organization to lead, or at least connect, the sharing of data, algorithms, insights, and best practices?
* Given A.I. regulations and market expectations, what are the new roles and organizational capabilities that we will need to ensure that our strategy and execution are aligned? How will we hire, or reskill, talent to acquire these capabilities?
* Is our strategy horizon appropriate to combine the short-run responses to a constantly changing technology and regulatory environment with our long-term A.I. vision?
As the use of A.I. in companies’ internal and external processes becomes more pervasive, and the expectations of stakeholders about fair, safe, and trustworthy A.I. rise, companies are bound to run headlong into man vs. machine clashes. The sooner CEOs come to grips with the value-risk tradeoffs of using A.I.-driven systems, the better they will be able to cope with both regulations and expectations in an A.I.-driven world.
Fran?ois Candelon ([email protected]) is a managing director and senior partner at the Boston Consulting Group and the global director of the BCG Henderson Institute. Theodoros Evgeniou ([email protected]) is a professor of decision sciences and technology management at INSEAD working on A.I. and data analytics for business.