精品国产_亚洲人成在线高清,国产精品成人久久久久,国语自产偷拍精品视频偷拍

首頁 500強 活動 榜單 商業 科技 領導力 專題 品牌中心
雜志訂閱

一家人工智能公司,攻克了50年未解的醫學難題

Jeremy Kahn
2021-07-20

DeepMind能夠對大多數蛋白質類型做出十分精確的預測。

文本設置
小號
默認
大號
Plus(0條)

總部位于倫敦的人工智能公司DeepMind在去年年底攻克了一個長達50年的科學難題,通過使用人工智能軟件,僅根據蛋白質的遺傳密碼即可預測其折疊形狀,該公司于近日公布了具體細節。

蛋白質的形狀很重要,因為它有助于判斷蛋白質的功能。大多數藥物通過與蛋白質結構中具有某一特定形狀的“口袋”結合起作用。因此,弄清楚蛋白質的確切形狀可能是藥物開發過程中的關鍵一步,DeepMind的突破或有助于加快藥物的研發過程。

蛋白質的形狀通常使用某種成像方法確定。X射線晶體學是其中最精確的方法之一,通過將蛋白質溶液結晶,然后被高能X射線轟擊,對由此產生的衍射模式進行分析,從而構建出蛋白質的圖像。但這種方法昂貴、耗時,有時讓人倍感焦慮。近年來,也出現了其他方法,例如在極低的溫度下急速冷凍蛋白質,再通過電子顯微鏡進行觀察。

但早在1972年,諾貝爾獎得主、化學家克里斯蒂安?安芬森就提出,僅僅通過蛋白質的DNA序列,就可以準確預測其折疊成的確切形狀。然而,憑借當時的計算方法、基因測序技術、以及計算能力(這點同樣十分重要),還無法解決這種復雜的相關性問題。

1994年,開始每兩年舉辦一次名為蛋白質結構關鍵評估(Critical Assessment of Protein Structure)的軟件競賽,比賽內容是通過基因序列來預測蛋白質結構。2018年,谷歌(Google)母公司Alphabet旗下的DeepMind公司首次使用深度學習系統參加了比賽。深度學習系統是一種使用神經網絡的人工智能,一種以人腦連接方式為基本框架的軟件。DeepMind的系統名為AlphaFold,輕松擊敗了其他所有團隊,雖然仍遠未達到X射線晶體學的精度,但已經在預測精度上取得了巨大飛躍。

2020年,DeepMind攜重新設計的深度學習系統AlphaFold 2再次入圍。這一次,DeepMind能夠對大多數蛋白質類型做出十分精確的預測,最終不僅贏得了比賽,蛋白質結構關鍵評估競賽的組織者還宣布,DeepMind基本上解決了安芬森最初提出的蛋白質結構預測問題。

7月16日,在著名科學期刊《自然》(Nature)上發表的一篇同行評議文章中,DeepMind具體解釋了其人工智能軟件為何可以有如此出色的表現。它還開放了AlphaFold 2的代碼供其他研究人員使用。

該公司此前曾經表示,可能會開發一個界面,讓學術研究人員甚至制藥公司能夠通過 AlphaFold 2來查詢蛋白質的結構預測,但該公司尚未宣布任何類似計劃。Deepmind之外的科學家即使擁有源代碼,卻仍然需要自己訓練神經網絡,才可以得到有意義的蛋白質結構預測結果。

“我們承諾,將分享我們的方法,并為科學界提供范圍廣泛的免費使用途徑。”DeepMind的聯合創始人及首席執行官德米斯?哈薩比斯在一份聲明中說。“今天,我們向承諾邁出了第一步。”哈薩比斯表示,關于如何讓更多人獲取AlphaFold2的預測,公司“很快”會通報更多進展。

在《自然》雜志的論文里,DeepMind寫道,AlphaFold 2已經幫助使用X射線晶體學和蛋白質電子顯微鏡圖像方式的研究人員完善了他們對數據內容的理解。該系統還能夠準確預測和新冠病毒有關的一些關鍵蛋白質的形狀。

該論文顯示,AlphaFold 2使用的神經網絡設計很復雜。該網絡包含兩個大模塊,配合完成蛋白質結構的預測。

第一個模塊被DeepMind稱為“Evoformer”,負責讀取蛋白質的原始基因序列,以及該DNA密碼的哪些片段與其他結構已知的蛋白質中的片段共同進化的數據。Evoformer將這些數據以圖表的方式呈現,圖表以氨基酸對作為節點,用邊緣表示這些氨基酸對在蛋白質中彼此之間的接近程度。Evoformer有48個神經網絡“塊”,每個“塊”可能由多層網絡組成。

每個神經塊使用各種先進的機器學習技術對這張圖表進行一系列處理,再將其預測傳遞給下一個神經塊做進一步修訂。通過這種方式,Evoformer逐漸完成了對蛋白質主干形狀的預測。該系統使用的一些技術與最近自然語言處理取得的突破中使用的技術類似。

隨后,Evoformer將其預測傳遞給第二個模塊,即結構預測模塊。該模塊由另外8個神經網絡塊組成,通過一系列幾何變換,進一步細化蛋白質可能的形狀。特別的是,這個模塊構建了蛋白質可能的“側鏈”的圖像,在蛋白質的抽象3D圖像中,這些側鏈看起來像是從蛋白質主干分支出來的扭曲的帶狀花體。

DeepMind在其論文中指出,盡管AlphaFold 2對大多數已知蛋白質結構的精確度達到了不足一個原子寬度的距離,但在一些領域內卻仍然存在瓶頸。對于已知在蛋白質間共同進化的基因序列少于30個的蛋白質,AlphaFold的準確性大幅下降。DeepMind稱,這種共同進化信息“對于在網絡早期階段大致找到正確的結構是必要的。”

研究人員還表示,該系統對某些蛋白質的預測不佳,因為它們的形狀很大程度上是由側鏈之間的相互作用決定的,而不是沿著主干,或者包括兩條大相徑庭的氨基酸鏈相互交織。但科學家們還寫道,“我們預計”運用AlphaFold的理念,未來將能夠準確預測這種復雜的蛋白質結合,或許在暗示DeepMind可能已經在這個問題上取得了幕后進展。(財富中文網)

譯者:Agatha

總部位于倫敦的人工智能公司DeepMind在去年年底攻克了一個長達50年的科學難題,通過使用人工智能軟件,僅根據蛋白質的遺傳密碼即可預測其折疊形狀,該公司于近日公布了具體細節。

蛋白質的形狀很重要,因為它有助于判斷蛋白質的功能。大多數藥物通過與蛋白質結構中具有某一特定形狀的“口袋”結合起作用。因此,弄清楚蛋白質的確切形狀可能是藥物開發過程中的關鍵一步,DeepMind的突破或有助于加快藥物的研發過程。

蛋白質的形狀通常使用某種成像方法確定。X射線晶體學是其中最精確的方法之一,通過將蛋白質溶液結晶,然后被高能X射線轟擊,對由此產生的衍射模式進行分析,從而構建出蛋白質的圖像。但這種方法昂貴、耗時,有時讓人倍感焦慮。近年來,也出現了其他方法,例如在極低的溫度下急速冷凍蛋白質,再通過電子顯微鏡進行觀察。

但早在1972年,諾貝爾獎得主、化學家克里斯蒂安?安芬森就提出,僅僅通過蛋白質的DNA序列,就可以準確預測其折疊成的確切形狀。然而,憑借當時的計算方法、基因測序技術、以及計算能力(這點同樣十分重要),還無法解決這種復雜的相關性問題。

1994年,開始每兩年舉辦一次名為蛋白質結構關鍵評估(Critical Assessment of Protein Structure)的軟件競賽,比賽內容是通過基因序列來預測蛋白質結構。2018年,谷歌(Google)母公司Alphabet旗下的DeepMind公司首次使用深度學習系統參加了比賽。深度學習系統是一種使用神經網絡的人工智能,一種以人腦連接方式為基本框架的軟件。DeepMind的系統名為AlphaFold,輕松擊敗了其他所有團隊,雖然仍遠未達到X射線晶體學的精度,但已經在預測精度上取得了巨大飛躍。

2020年,DeepMind攜重新設計的深度學習系統AlphaFold 2再次入圍。這一次,DeepMind能夠對大多數蛋白質類型做出十分精確的預測,最終不僅贏得了比賽,蛋白質結構關鍵評估競賽的組織者還宣布,DeepMind基本上解決了安芬森最初提出的蛋白質結構預測問題。

7月16日,在著名科學期刊《自然》(Nature)上發表的一篇同行評議文章中,DeepMind具體解釋了其人工智能軟件為何可以有如此出色的表現。它還開放了AlphaFold 2的代碼供其他研究人員使用。

該公司此前曾經表示,可能會開發一個界面,讓學術研究人員甚至制藥公司能夠通過 AlphaFold 2來查詢蛋白質的結構預測,但該公司尚未宣布任何類似計劃。Deepmind之外的科學家即使擁有源代碼,卻仍然需要自己訓練神經網絡,才可以得到有意義的蛋白質結構預測結果。

“我們承諾,將分享我們的方法,并為科學界提供范圍廣泛的免費使用途徑。”DeepMind的聯合創始人及首席執行官德米斯?哈薩比斯在一份聲明中說。“今天,我們向承諾邁出了第一步。”哈薩比斯表示,關于如何讓更多人獲取AlphaFold2的預測,公司“很快”會通報更多進展。

在《自然》雜志的論文里,DeepMind寫道,AlphaFold 2已經幫助使用X射線晶體學和蛋白質電子顯微鏡圖像方式的研究人員完善了他們對數據內容的理解。該系統還能夠準確預測和新冠病毒有關的一些關鍵蛋白質的形狀。

該論文顯示,AlphaFold 2使用的神經網絡設計很復雜。該網絡包含兩個大模塊,配合完成蛋白質結構的預測。

第一個模塊被DeepMind稱為“Evoformer”,負責讀取蛋白質的原始基因序列,以及該DNA密碼的哪些片段與其他結構已知的蛋白質中的片段共同進化的數據。Evoformer將這些數據以圖表的方式呈現,圖表以氨基酸對作為節點,用邊緣表示這些氨基酸對在蛋白質中彼此之間的接近程度。Evoformer有48個神經網絡“塊”,每個“塊”可能由多層網絡組成。

每個神經塊使用各種先進的機器學習技術對這張圖表進行一系列處理,再將其預測傳遞給下一個神經塊做進一步修訂。通過這種方式,Evoformer逐漸完成了對蛋白質主干形狀的預測。該系統使用的一些技術與最近自然語言處理取得的突破中使用的技術類似。

隨后,Evoformer將其預測傳遞給第二個模塊,即結構預測模塊。該模塊由另外8個神經網絡塊組成,通過一系列幾何變換,進一步細化蛋白質可能的形狀。特別的是,這個模塊構建了蛋白質可能的“側鏈”的圖像,在蛋白質的抽象3D圖像中,這些側鏈看起來像是從蛋白質主干分支出來的扭曲的帶狀花體。

DeepMind在其論文中指出,盡管AlphaFold 2對大多數已知蛋白質結構的精確度達到了不足一個原子寬度的距離,但在一些領域內卻仍然存在瓶頸。對于已知在蛋白質間共同進化的基因序列少于30個的蛋白質,AlphaFold的準確性大幅下降。DeepMind稱,這種共同進化信息“對于在網絡早期階段大致找到正確的結構是必要的。”

研究人員還表示,該系統對某些蛋白質的預測不佳,因為它們的形狀很大程度上是由側鏈之間的相互作用決定的,而不是沿著主干,或者包括兩條大相徑庭的氨基酸鏈相互交織。但科學家們還寫道,“我們預計”運用AlphaFold的理念,未來將能夠準確預測這種復雜的蛋白質結合,或許在暗示DeepMind可能已經在這個問題上取得了幕后進展。(財富中文網)

譯者:Agatha

DeepMind, the London-based artificial intelligence company, has published further details of how it solved a 50-year-old scientific challenge late last year, using A.I. software to predict the shape into which proteins would fold based solely on their genetic code.

The shape of a protein is important because it helps determine that protein’s function. Most drugs work by binding to very specifically shaped “pockets” within the structure of a protein. So knowing the exact shape of the protein can be a critical step in the development of new pharmaceuticals, and DeepMind’s breakthrough has the potential to accelerate drug discovery.

The shape of a proteins is usually determined using some kind of imaging method. One of the most accurate is X-ray crystallography, in which a solution of proteins is crystallized and then bombarded with high-powered X-rays and the resulting diffraction patterns analyzed to build up a picture of the protein. But the method is expensive, time-consuming, and sometimes fraught. More recently, other methods have been used, such as flash-freezing the proteins at extremely low temperatures and then examining them in electron microscopes.

But back in 1972, Nobel laureate chemist Christian Anfinsen postulated that it should be possible to accurately predict the exact shape a protein will fold into just by looking at its DNA sequence. At the time, however, the computational methods, the gene sequencing techniques, and just as important, the computing power, to work out such complex correlations did not exist.

A biennial contest for software that could accurately predict protein structure from genetic sequences, called the Critical Assessment of Protein Structure (or CASP) competition, began in 1994. In 2018, DeepMind—which is owned by Google parent-company Alphabet—entered the competition for the first time using a deep-learning system, a kind of artificial intelligence that uses neural networks: software that is loosely based on the way connections in the human brain work. DeepMind’s system, which it called AlphaFold, handily beat all the other teams, making a big leap forward in prediction accuracy, although it was still far from equaling the accuracy of X-ray crystallography.

Last year, DeepMind entered again with a redesigned deep-learning system, AlphaFold 2. This time it was able to make predictions that were so accurate across most protein types that not only did the A.I. company’s team win the contest, the CASP organizers themselves declared that DeepMind had essentially solved the protein structure prediction problem as Anfinsen had first formulated it.

On July 16, in a peer-reviewed paper published in the prestigious scientific journal Nature, DeepMind offered further details of how exactly its A.I. software was able to perform so well. It has also open-sourced the code it used to create AlphaFold 2 for other researchers to use.

The company has said previously that it may develop an interface that would allow academic researchers and possibly even pharmaceutical companies to simply query AlphaFold 2 for protein structure predictions, but the company has not yet announced any such access. Having the source code would still require non-DeepMind scientists to train the neural network themselves before they could derive useful protein structure predictions.

“We pledged to share our methods and provide broad, free access to the scientific community,” Demis Hassabis, DeepMind’s cofounder and chief executive officer, said in a statement. “Today we take the first step toward delivering on that commitment.” Hassabis promised to share more updates “soon” on the company’s progress toward making AlphaFold2’s predictions more widely available.

In its Nature paper, DeepMind wrote that AlphaFold 2 has already helped those who study X-ray crystallography and electron microscope images of proteins to better refine their understanding of what they are seeing in that data. The system has also already proven that it can accurately predict the shape of some key proteins associated with SARS-CoV-2, the virus that causes COVID-19.

The design of the neural network used in AlphaFold 2, according to the Nature paper, is complicated. It consists of two large modules that work together to create a prediction of a protein’s structure.

The first module, which DeepMind calls Evoformer, takes in both the protein’s raw genetic sequence and data about which parts of that DNA code have co-evolved with those found in other proteins for which there is a known structure. The Evoformer then represents the data as a graph, in which the nodes of the graph are amino-acid pairs and the edges of the graph represent the proximity of those pairs to one another in the protein. This Evoformer has 48 neural network “blocks,” each of which might consist of multiple layers of the network.

Each of these blocks performs a series of manipulations of this graph, using a variety of state-of-the-art machine-learning techniques, before passing its prediction along to the next block for further revision. In this way, the entire Evoformer gradually refines a forecast for what the backbone of the protein should look like. Some of the techniques the system uses are similar to those that underpin recent breakthroughs in natural language processing.

The Evoformer then passes its prediction to a second module, called the Structure Prediction Module. Consisting of eight more neural network blocks, it performs a series of geometric transformations to further refine the protein’s likely shape. In particular, this module builds up a picture of the protein’s likely “side chains,” which in abstracted 3D images of proteins appears as twisty, ribbonlike curlicues that branch off from the main protein backbone.

DeepMind noted in its paper that while AlphaFold 2 achieved accuracy to within a fraction of an atom’s width of distance for a majority of known protein structures, there were still some areas where it struggled. For proteins where there were fewer than 30 genetic sequences that are known to have co-evolved across proteins, AlphaFold’s accuracy dropped substantially. DeepMind said it thought this co-evolution information was “needed to coarsely find the correct structure in the early stages of the network.”

The researchers also said the system did not perform as well for certain kinds of proteins where their shape is largely determined by interactions between the side chains rather than along the backbone, or that consisted of the intertwining of two very different amino-acid chains. But the scientists also wrote that “we expect” the same ideas used in AlphaFold will be able to accurately predict such complex protein bindings in the future, hinting that perhaps DeepMind has already made progress on this problem behind the scenes.

財富中文網所刊載內容之知識產權為財富媒體知識產權有限公司及/或相關權利人專屬所有或持有。未經許可,禁止進行轉載、摘編、復制及建立鏡像等任何使用。
0條Plus
精彩評論
評論

撰寫或查看更多評論

請打開財富Plus APP

前往打開

            主站蜘蛛池模板: 巫山县| 大港区| 江门市| 安义县| 秦皇岛市| 黔西| 疏勒县| 朝阳区| 胶州市| 浙江省| 曲周县| 恩施市| 宜章县| 衡山县| 东莞市| 郓城县| 邹城市| 东乌| 科技| 公主岭市| 闵行区| 广东省| 龙南县| 泰来县| 盐边县| 临城县| 合山市| 普安县| 宜昌市| 凉城县| 蒙山县| 苍溪县| 大竹县| 正镶白旗| 桂平市| 青龙| 永康市| 郸城县| 同江市| 卢龙县| 新巴尔虎左旗|