2016年3月13日深夜,氣溫相當(dāng)寒冷,兩名男子頭戴羊毛帽,身穿厚厚的外套,并肩走過(guò)韓國(guó)首爾市中心擁擠的街道。二人熱烈地交談,似乎完全忽視了周?chē)溩羽^和燒烤店霓虹燈的誘惑。他們此行韓國(guó)肩負(fù)重任,多年的努力終于能夠看到結(jié)果。最棒的是,他們剛剛成功了。
這次散步是為了慶祝。他們?nèi)〉玫某删蛯⑦M(jìn)一步鞏固他們?cè)谟?jì)算機(jī)史上的地位。在古老的戰(zhàn)略游戲圍棋領(lǐng)域里,他們開(kāi)發(fā)的人工智能軟件已經(jīng)充分掌握了個(gè)中奧秘,而且輕松擊敗了全球頂尖選手李世石。如今,兩人開(kāi)始討論下一個(gè)目標(biāo),身后跟蹤的紀(jì)錄片攝制組捕捉到了當(dāng)時(shí)的談話(huà)。
“告訴你,我們可以解決蛋白質(zhì)折疊問(wèn)題。”德米斯?哈薩比斯對(duì)同伴大衛(wèi)?西爾弗說(shuō)。“那才是大成就。我相信現(xiàn)在能夠去做了。以前我只是想過(guò),現(xiàn)在肯定可以做成。”哈薩比斯是總部位于倫敦的人工智能公司DeepMind的聯(lián)合創(chuàng)始人及首席執(zhí)行官,正是該公司開(kāi)發(fā)出了AlphaGo(阿爾法狗)。西爾弗則是DeepMind的計(jì)算機(jī)科學(xué)家,負(fù)責(zé)領(lǐng)導(dǎo)AlphaGo團(tuán)隊(duì)。
四年后,DeepMind實(shí)現(xiàn)了當(dāng)年哈薩比斯在首爾散步時(shí)的設(shè)想。公司開(kāi)發(fā)出了人工智能系統(tǒng),能夠根據(jù)基因序列來(lái)預(yù)測(cè)蛋白質(zhì)的復(fù)雜形狀,精確到單個(gè)原子寬度。靠著這項(xiàng)成就,DeepMind完成了需要近50年才能完成的科學(xué)探索。1972年,化學(xué)家克里斯蒂安?安芬森在諾貝爾獎(jiǎng)獲獎(jiǎng)演說(shuō)中提出,只有DNA才可以完全決定蛋白質(zhì)的最終結(jié)構(gòu)。這是驚人的猜想。當(dāng)時(shí)連一個(gè)基因組都未完成測(cè)序。安芬森的理論開(kāi)創(chuàng)了計(jì)算生物學(xué)的分支,目標(biāo)是用復(fù)雜的數(shù)學(xué)模擬蛋白質(zhì)結(jié)構(gòu),而不是實(shí)驗(yàn)。
DeepMind在圍棋方面取得的成就確實(shí)很重要,但在圍棋和計(jì)算機(jī)科學(xué)這兩個(gè)相對(duì)偏僻的領(lǐng)域之外,幾乎沒(méi)有產(chǎn)生什么具體影響。解決蛋白質(zhì)折疊問(wèn)題則完全不同,對(duì)大多數(shù)人來(lái)說(shuō)都有變革意義。蛋白質(zhì)是生命的基本組成部分,也是大多數(shù)生物過(guò)程背后的運(yùn)行機(jī)制。如果能夠預(yù)測(cè)蛋白質(zhì)的結(jié)構(gòu),將徹底改變?nèi)藗儗?duì)疾病的理解,還可以為癌癥到老年癡呆癥等各種疾病開(kāi)發(fā)全新也更具針對(duì)性的藥物。新藥上市時(shí)間有望加快,藥物研發(fā)成本減少數(shù)年時(shí)間,成本也節(jié)約數(shù)億美元,還可能會(huì)拯救很多生命。
DeepMind首創(chuàng)的新方法在抗擊SARS-CoV-2(也就是新冠病毒)的斗爭(zhēng)中已經(jīng)取得成果。以下是以游戲知名的公司如何揭開(kāi)生物學(xué)最大秘密的故事。
形狀莫測(cè)的積木
“蛋白質(zhì)是細(xì)胞的主要機(jī)器。”加州大學(xué)伯克利分校的生物工程教授伊恩?霍姆斯表示。蛋白質(zhì)的結(jié)構(gòu)和形狀對(duì)其工作方式至關(guān)重要,構(gòu)成蛋白質(zhì)分子晶格的小“口袋”是發(fā)生各種化學(xué)反應(yīng)的地方。如果能夠找到某種化學(xué)物質(zhì)與其中一個(gè)口袋結(jié)合,這種物質(zhì)就可以作為藥物阻止或加速生物過(guò)程。生物工程師還能夠創(chuàng)造出自然界中從未出現(xiàn)的全新蛋白質(zhì),而且具有獨(dú)特的療效。“如果我們可以利用蛋白質(zhì)的力量,合理地設(shè)計(jì)用途,就能夠制造出神奇的自我組裝機(jī)器,發(fā)揮一些作用。”霍姆斯說(shuō)。
但為了確保蛋白質(zhì)達(dá)到想要的效果,把握其形狀很重要。
蛋白質(zhì)由氨基酸鏈組成,常被比作細(xì)繩上的珠子。至于珠子按照什么順序穿起來(lái),信息都存儲(chǔ)在DNA里。但是,根據(jù)簡(jiǎn)單的基因指令很難預(yù)測(cè)完整的鏈條會(huì)形成多復(fù)雜的物理形狀。氨基酸鏈根據(jù)分子間吸引和排斥的電化學(xué)規(guī)則折疊成某種結(jié)構(gòu)。形狀常常類(lèi)似繩索和絲帶纏繞而成的抽象雕塑:褶皺的帶狀物加上莫比烏斯帶,就像卷曲環(huán)狀的螺旋。20世紀(jì)60年代,物理學(xué)家和分子生物學(xué)家塞勒斯?列文塔爾發(fā)現(xiàn),一種蛋白質(zhì)的形狀有太多可能性。如果想通過(guò)隨機(jī)嘗試組合找出蛋白質(zhì)的準(zhǔn)確結(jié)構(gòu),花的時(shí)間比已知宇宙的年齡還長(zhǎng)。而且,幾毫秒內(nèi)蛋白質(zhì)就會(huì)完成折疊。該觀(guān)察被稱(chēng)為列文塔爾悖論。
到目前為止,只有通過(guò)所謂X射線(xiàn)晶體衍射才可以接近準(zhǔn)確了解蛋白質(zhì)的結(jié)構(gòu)。顧名思義,首先需要將含有數(shù)百萬(wàn)蛋白質(zhì)的溶液轉(zhuǎn)化為晶體,本身就是很復(fù)雜的化學(xué)過(guò)程。然后,X射線(xiàn)發(fā)射到晶體上,科學(xué)家從獲得的衍射圖逆向工作,從而建立蛋白質(zhì)圖像。而且,還不是隨便什么X射線(xiàn)都可以。要想獲得很多蛋白質(zhì)的結(jié)構(gòu),要由圓形的,大小堪比體育場(chǎng)的同步加速器發(fā)射X射線(xiàn)。
過(guò)程既昂貴又耗時(shí)。根據(jù)多倫多大學(xué)(University of Toronto)的研究人員估計(jì),用X射線(xiàn)晶體衍射法測(cè)定單個(gè)蛋白質(zhì)的結(jié)構(gòu)需要約12個(gè)月,花費(fèi)約12萬(wàn)美元。已知的蛋白質(zhì)超過(guò)2億種,每年大約能夠發(fā)現(xiàn)3000萬(wàn)種,但其中只有不到20萬(wàn)種蛋白質(zhì)通過(guò)X射線(xiàn)晶體衍射或其他實(shí)驗(yàn)方法繪制出了結(jié)構(gòu)圖。“人類(lèi)的無(wú)知程度正在迅速增長(zhǎng)。”計(jì)算物理學(xué)家約翰?喬普說(shuō),現(xiàn)在他擔(dān)任DeepMind的高級(jí)研究員,負(fù)責(zé)領(lǐng)導(dǎo)蛋白質(zhì)折疊團(tuán)隊(duì)。
過(guò)去50年里,自從克里斯蒂安?安芬森發(fā)表著名演講以來(lái),科學(xué)家們一直努力使用高性能計(jì)算機(jī)上運(yùn)行的復(fù)雜數(shù)學(xué)模型加速分析蛋白質(zhì)結(jié)構(gòu)。“基本上就是嘗試在計(jì)算機(jī)里創(chuàng)建蛋白質(zhì)的數(shù)字雙胞胎,然后嘗試操作。”馬里蘭大學(xué)的細(xì)胞生物學(xué)和分子遺傳學(xué)教授約翰?穆?tīng)柼卣f(shuō),他也是用數(shù)學(xué)算法通過(guò)DNA序列預(yù)測(cè)蛋白質(zhì)結(jié)構(gòu)的先驅(qū)。問(wèn)題是,預(yù)測(cè)出的折疊模式經(jīng)常有誤,與科學(xué)家通過(guò)X射線(xiàn)晶體衍射發(fā)現(xiàn)的結(jié)構(gòu)并不一致。事實(shí)上大約10年前,很少有模型預(yù)測(cè)大蛋白質(zhì)形狀時(shí)準(zhǔn)確率可以超過(guò)三分之一。
蛋白質(zhì)折疊模擬要占用龐大的算力。2000年,研究人員創(chuàng)建了名叫Fold@home的“公民科學(xué)”項(xiàng)目,人們能夠捐出個(gè)人電腦和游戲機(jī)的閑置處理能力運(yùn)行蛋白質(zhì)折疊模擬。所有設(shè)備通過(guò)互聯(lián)網(wǎng)連接在一起,從而打造全世界最強(qiáng)大的虛擬超級(jí)計(jì)算機(jī)之一。大家都希望幫研究人員擺脫列文塔爾悖論,通過(guò)隨機(jī)實(shí)驗(yàn)和試錯(cuò)準(zhǔn)確判斷蛋白質(zhì)的結(jié)構(gòu)。目前該項(xiàng)目仍然在進(jìn)行中,已經(jīng)為超過(guò)225篇論文提供了數(shù)據(jù),研究?jī)?nèi)容是與多種疾病相關(guān)的蛋白質(zhì)。
盡管擁有強(qiáng)大的處理能力,F(xiàn)old@home仍然深陷列文塔爾悖論,因?yàn)樗惴ㄔ噲D搜索所有可能的排列,從而找到蛋白質(zhì)結(jié)構(gòu)。破解蛋白質(zhì)折疊的關(guān)鍵在于跳過(guò)艱苦搜索的過(guò)程,發(fā)現(xiàn)蛋白質(zhì)DNA序列與結(jié)構(gòu)聯(lián)系的神秘模式,從而讓計(jì)算機(jī)踏上全新捷徑,直接從遺傳學(xué)領(lǐng)域轉(zhuǎn)到準(zhǔn)確繪制形狀。
嚴(yán)肅的游戲
德米斯?哈薩比斯對(duì)蛋白質(zhì)折疊的興趣始于一場(chǎng)游戲,他對(duì)很多事都是這樣。哈薩比斯曾經(jīng)是國(guó)際象棋天才,13歲時(shí)已經(jīng)成為大師,一度在同年齡里排名世界第二。他對(duì)象棋的熱愛(ài)后來(lái)轉(zhuǎn)向?qū)杉赂信d趣:一是游戲設(shè)計(jì),二是研究自身意識(shí)的內(nèi)在機(jī)制。他高中時(shí)開(kāi)始為電子游戲公司工作,在劍橋大學(xué)(University of Cambridge)學(xué)習(xí)計(jì)算機(jī)科學(xué)后,1998年創(chuàng)立了電腦游戲初創(chuàng)公司Elixir Studios。
盡管曾經(jīng)研發(fā)出兩款獲獎(jiǎng)游戲,最終Elixir還是賣(mài)掉知識(shí)產(chǎn)權(quán)并關(guān)閉公司,哈薩比斯從倫敦大學(xué)學(xué)院(University College London)獲得了認(rèn)知神經(jīng)科學(xué)博士學(xué)位。彼時(shí)他已經(jīng)開(kāi)始踏上漫漫征途,后來(lái)2010年聯(lián)合創(chuàng)立了DeepMind。他開(kāi)始研發(fā)通用人工智能軟件,不僅可以學(xué)習(xí)執(zhí)行很多任務(wù),有些甚至比人類(lèi)完成得更好。哈薩比斯曾經(jīng)說(shuō)過(guò),DeepMind的遠(yuǎn)大目標(biāo)是“解決智能問(wèn)題,然后解決所有其他問(wèn)題。”哈薩比斯也曾經(jīng)暗示,蛋白質(zhì)折疊可能就是“其他問(wèn)題”里的第一批。
2009年,哈薩比斯在麻省理工學(xué)院(Massachusetts Institute of Technology)攻讀博士后時(shí),聽(tīng)說(shuō)了一款名為Foldit的在線(xiàn)游戲。Foldit是由華盛頓大學(xué)(University of Washington)的研究人員設(shè)計(jì),跟Fold@home類(lèi)似,也是有關(guān)蛋白質(zhì)折疊的“公民科學(xué)”項(xiàng)目。但Foldit并不是整合閑置的微芯片,而是利用閑置的大腦。
Foldit是類(lèi)似益智游戲的游戲,并不掌握生物學(xué)領(lǐng)域知識(shí)的人類(lèi)玩家比賽折疊蛋白質(zhì),如果能夠得到合理的形狀就可以獲得積分。然后,研究人員分析得分最高的設(shè)計(jì),看是否有助于破解蛋白質(zhì)結(jié)構(gòu)問(wèn)題。游戲已經(jīng)吸引成千上萬(wàn)玩家,并且一些記錄案例中得到的蛋白質(zhì)結(jié)構(gòu)比研究蛋白質(zhì)折疊的計(jì)算機(jī)算法更準(zhǔn)確。“從這個(gè)角度來(lái)看,我覺(jué)得游戲很有趣,想著能不能利用游戲的上癮性和游戲的樂(lè)趣,不僅讓人們玩得開(kāi)心,也做一些對(duì)科學(xué)有用的事情。”哈薩比斯說(shuō)。
Foldit能夠抓住哈薩比斯的想象力還有另一個(gè)原因。其實(shí)游戲是一種強(qiáng)化學(xué)習(xí)行為,特別適合訓(xùn)練人工智能。軟件可以通過(guò)試驗(yàn)和試錯(cuò)從經(jīng)驗(yàn)中學(xué)習(xí),從而更好地完成任務(wù)。在游戲里軟件能夠無(wú)休止地試驗(yàn),反復(fù)地玩,逐步改進(jìn),不對(duì)現(xiàn)實(shí)世界造成傷害的情況下提升技能水平,直到超過(guò)人類(lèi)。游戲也有現(xiàn)成的方法判斷某個(gè)特定的動(dòng)作或某組動(dòng)作是否有效,即積分和勝利。種種指標(biāo)可以提供非常明確的標(biāo)準(zhǔn)衡量表現(xiàn),在現(xiàn)實(shí)世界很多問(wèn)題里則無(wú)法如此處理。現(xiàn)實(shí)世界遇到問(wèn)題時(shí),最有效的方法可能比較模糊,“獲勝”的概念也可能不適用。
DeepMind的基礎(chǔ)主要是將強(qiáng)化學(xué)習(xí)與稱(chēng)為深度學(xué)習(xí)的人工智能相結(jié)合。深度學(xué)習(xí)是基于神經(jīng)網(wǎng)絡(luò)的人工智能,所謂神經(jīng)網(wǎng)絡(luò)是大致基于人腦工作原理的軟件。這種情況下,軟件沒(méi)有實(shí)際的神經(jīng)細(xì)胞網(wǎng)絡(luò),而是一堆虛擬神經(jīng)元分層排列,初始輸入層接收數(shù)據(jù),按照權(quán)重分配后傳遞到中間層,中間層依次執(zhí)行相同操作,最終傳遞到輸出層,輸出層匯總各項(xiàng)加權(quán)值并算出結(jié)果。網(wǎng)絡(luò)能夠調(diào)整各項(xiàng)權(quán)重,直到產(chǎn)生理想的結(jié)果,例如準(zhǔn)確識(shí)別貓的照片或國(guó)際象棋獲勝。之所以被稱(chēng)為“深度學(xué)習(xí)”,并不是因?yàn)楫a(chǎn)生的結(jié)果一定深刻,當(dāng)然也有可能深刻,但主要原因是網(wǎng)絡(luò)由許多層構(gòu)成,所以可以說(shuō)具有深度。
DeepMind最初成功是用“深度強(qiáng)化學(xué)習(xí)”創(chuàng)建軟件,自學(xué)玩經(jīng)典的雅達(dá)利電腦游戲,如《乒乓球》(Pong)、《突圍》(Breakout)和《太空入侵者》(Space Invaders)等,而且水平超過(guò)人類(lèi)。正是這一成就讓DeepMind受到谷歌(Google)等科技巨頭的關(guān)注,據(jù)報(bào)道,2014年谷歌以4億英鎊(當(dāng)時(shí)超過(guò)6億美元)收購(gòu)了DeepMind。之后公司主攻圍棋并開(kāi)發(fā)了AlphaGo系統(tǒng),2016年擊敗了李世石。DeepMind接著開(kāi)發(fā)了名叫AlphaZero的更通用系統(tǒng)版本,幾乎能夠?qū)W會(huì)所有兩玩家回合制游戲,在這種游戲中,玩家都可以獲得充分信息(沒(méi)有機(jī)會(huì)隱藏信息,例如牌面朝下放置或隱藏位置)。去年,公司開(kāi)發(fā)的系統(tǒng)還在高度復(fù)雜的即時(shí)戰(zhàn)略游戲《星際爭(zhēng)霸2》(Starcraft 2)中擊敗了頂尖的人類(lèi)職業(yè)電競(jìng)玩家。
但哈薩比斯表示,一直認(rèn)為公司在游戲方面的探索是完善人工智能系統(tǒng)的方式,之后能夠應(yīng)用于現(xiàn)實(shí)世界挑戰(zhàn),尤其是科學(xué)領(lǐng)域。“比賽只是訓(xùn)練場(chǎng),但訓(xùn)練到底為了什么?最終是為了創(chuàng)造新知識(shí)。”他說(shuō)。
DeepMind并非具有產(chǎn)品和客戶(hù)的傳統(tǒng)業(yè)務(wù),本質(zhì)上是推動(dòng)人工智能前沿的研究實(shí)驗(yàn)室。公司的很多開(kāi)發(fā)方法都已經(jīng)公開(kāi),供所有人使用或借鑒。不過(guò)某些方面的進(jìn)步對(duì)姊妹公司谷歌也頗有幫助。
DeepMind團(tuán)隊(duì)由工程師和科學(xué)家組成,幫助谷歌將尖端的人工智能技術(shù)融入產(chǎn)品。DeepMind的技術(shù)已經(jīng)滲透各處,從谷歌地圖(Google Maps)到數(shù)字助理,再到協(xié)助管理安卓手機(jī)電池電量的系統(tǒng)。谷歌為此向DeepMind支付費(fèi)用,母公司Alphabet繼續(xù)承擔(dān)DeepMind帶來(lái)的額外虧損。虧損規(guī)模并不小,2018年,公司虧損4.7億英鎊(當(dāng)時(shí)約合5.1億美元),這也是通過(guò)英國(guó)的商業(yè)注冊(cè)機(jī)構(gòu)公司登記局(Companies House)可以查到的最新一年公開(kāi)記錄。
不過(guò)如今員工超過(guò)1000人的DeepMind,還有一整個(gè)部門(mén)只負(fù)責(zé)人工智能的科學(xué)應(yīng)用。該部門(mén)的負(fù)責(zé)人為39歲的印度人普什米?科里,他加入DeepMind之前曾經(jīng)在微軟從事人工智能研究。他表示,DeepMind的目標(biāo)是解決“根節(jié)點(diǎn)”問(wèn)題,這是數(shù)據(jù)科學(xué)家的慣用語(yǔ),意思是希望解決能夠解鎖很多科學(xué)路徑的基礎(chǔ)問(wèn)題。蛋白質(zhì)折疊就是根節(jié)點(diǎn)之一,科里說(shuō)。
“蛋白質(zhì)折疊的奧運(yùn)會(huì)”
1994年,當(dāng)很多科學(xué)家剛開(kāi)始使用復(fù)雜的計(jì)算機(jī)算法預(yù)測(cè)蛋白質(zhì)折疊方式時(shí),馬里蘭大學(xué)的生物學(xué)家墨爾特決定開(kāi)辦競(jìng)賽,用公正的方法評(píng)估哪種算法最好。他把比賽稱(chēng)為蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)關(guān)鍵評(píng)估(簡(jiǎn)稱(chēng)為CASP),之后每?jī)赡昱e辦一次。
賽事具體如下,美國(guó)國(guó)立衛(wèi)生研究院資助的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)中心主辦CASP,并說(shuō)服從事X射線(xiàn)晶體衍射和其他實(shí)證研究的研究人員提供尚未公布的蛋白質(zhì)結(jié)構(gòu),要求在CASP競(jìng)賽結(jié)束之前不公開(kāi)相關(guān)結(jié)構(gòu)。然后CASP將蛋白質(zhì)DNA序列發(fā)給參賽者,參賽者用算法預(yù)測(cè)蛋白質(zhì)結(jié)構(gòu)。CASP判斷預(yù)測(cè)與X射線(xiàn)晶體學(xué)家和實(shí)驗(yàn)學(xué)家發(fā)現(xiàn)的實(shí)際結(jié)構(gòu)接近程度,然后根據(jù)算法對(duì)各種蛋白質(zhì)預(yù)測(cè)的平均得分排名。“我稱(chēng)之為蛋白質(zhì)折疊界的奧運(yùn)會(huì)。”哈薩比斯說(shuō)。2016年AlphaGo擊敗李世石后不久,DeepMind就打算贏得金牌。
DeepMind組建了小規(guī)模精干的團(tuán)隊(duì),由六名機(jī)器學(xué)習(xí)研究人員和工程師組成。“讓‘通才’入手是我們的理念。”哈薩比斯說(shuō)。公司里并不缺乏人才。“前物理學(xué)家、前生物學(xué)家,大家都四處閑逛。”哈薩比斯有點(diǎn)啼笑皆非。“他們永遠(yuǎn)不知道之前的專(zhuān)業(yè)知識(shí)什么時(shí)候可以突然發(fā)揮作用。”最后團(tuán)隊(duì)成員增加到20人左右。
不過(guò),DeepMind還是認(rèn)為團(tuán)隊(duì)里至少要有一位真正的蛋白質(zhì)折疊專(zhuān)家,后來(lái)選中了約翰?喬普。35歲的喬普像個(gè)大男孩,瘦得皮包骨,一頭蓬亂斜梳的棕色頭發(fā),有點(diǎn)像20世紀(jì)90年代末高中車(chē)庫(kù)樂(lè)隊(duì)的低音吉他手。他在劍橋大學(xué)獲得理論凝聚態(tài)物理碩士學(xué)位,之后在紐約由對(duì)沖基金億萬(wàn)富翁大衛(wèi)?肖創(chuàng)立的獨(dú)立研究實(shí)驗(yàn)室D.E.Shaw Research工作。實(shí)驗(yàn)室專(zhuān)門(mén)研究計(jì)算生物學(xué),包括蛋白質(zhì)模擬。后來(lái)喬普在芝加哥大學(xué)獲得了計(jì)算生物物理學(xué)博士學(xué)位,導(dǎo)師為卡爾?弗里德和托賓?索斯尼克,兩位科學(xué)家皆因推動(dòng)蛋白質(zhì)折疊模型進(jìn)步出名。“我曾經(jīng)聽(tīng)說(shuō)DeepMind對(duì)解決蛋白質(zhì)結(jié)構(gòu)有興趣。”他說(shuō)。于是他申請(qǐng)并順利加入。
哈薩比斯和DeepMind團(tuán)隊(duì)的第一直覺(jué)是,蛋白質(zhì)折疊能夠用與圍棋完全相同的方式解決,即深度強(qiáng)化學(xué)習(xí)。事實(shí)證明存在問(wèn)題。首先,蛋白質(zhì)折疊結(jié)構(gòu)的可能性比圍棋的步數(shù)還要多。更重要的是,DeepMind讓工智能系統(tǒng)AlphaGo與自己對(duì)弈就可以掌握圍棋的玩法。“所以可比性并不高,因?yàn)榈鞍踪|(zhì)折疊不是雙人游戲。”哈薩比斯說(shuō),“有點(diǎn)違背自然。”
DeepMind很快發(fā)現(xiàn),如果使用所謂監(jiān)督式深度學(xué)習(xí)的人工智能培訓(xùn)方法,就能夠更簡(jiǎn)便地取得進(jìn)步。這是大多數(shù)商業(yè)應(yīng)用里使用的人工智能,神經(jīng)網(wǎng)絡(luò)通過(guò)一組既定數(shù)據(jù)輸入和相應(yīng)輸出,可以學(xué)習(xí)如何將給定的輸入與給定輸出相匹配。具體到蛋白質(zhì)結(jié)構(gòu),DeepMind已經(jīng)掌握約170000個(gè)蛋白質(zhì)結(jié)構(gòu),能夠作為訓(xùn)練數(shù)據(jù)。蛋白質(zhì)數(shù)據(jù)庫(kù)(PDB)是已知三維蛋白質(zhì)形狀及遺傳序列的公共存儲(chǔ)庫(kù),可以公開(kāi)查詢(xún)相關(guān)結(jié)構(gòu)。
一些生物學(xué)家已經(jīng)使用監(jiān)督式深度學(xué)習(xí)預(yù)測(cè)蛋白質(zhì)如何折疊。但此類(lèi)人工智能系統(tǒng)表現(xiàn)最佳的正確率也只有50%,對(duì)生物學(xué)家或醫(yī)學(xué)研究人員沒(méi)有什么幫助,尤其是對(duì)結(jié)構(gòu)未知的蛋白質(zhì),因?yàn)闊o(wú)法確定某次特定預(yù)測(cè)是否正確。
有種技術(shù)很有希望,其理念是基于蛋白質(zhì)的進(jìn)化史劃分為不同的家族。各種家族里可能在一個(gè)DNA序列中找到相距遙遠(yuǎn)但似乎會(huì)同時(shí)突變的氨基酸對(duì)。此類(lèi)所謂“共同進(jìn)化”的現(xiàn)象很有幫助,因?yàn)楣餐M(jìn)化的蛋白質(zhì)很可能在蛋白質(zhì)折疊結(jié)構(gòu)中有聯(lián)系。位于芝加哥的豐田技術(shù)研究所(Toyota Technological Institute)的科學(xué)家徐金波(音譯)率先利用深入學(xué)習(xí)共同進(jìn)化數(shù)據(jù)預(yù)測(cè)氨基酸聯(lián)系。這種方法有點(diǎn)像是在連接點(diǎn)游戲里尋找點(diǎn)。科學(xué)家仍然要用其他軟件找出點(diǎn)之間的線(xiàn),過(guò)程中經(jīng)常出錯(cuò)。有時(shí)候連點(diǎn)都找不準(zhǔn)。
在2018年的CASP競(jìng)賽中,DeepMind應(yīng)用了共同進(jìn)化和預(yù)測(cè)聯(lián)系的基本思想,但增加了兩個(gè)重要的轉(zhuǎn)折點(diǎn)。首先,系統(tǒng)沒(méi)有試圖確定兩個(gè)氨基酸是否有聯(lián)系,也就是二進(jìn)制輸出(即兩個(gè)氨基酸可能有聯(lián)系,也可能沒(méi)有聯(lián)系),而是決定讓算法預(yù)測(cè)蛋白質(zhì)里所有氨基酸對(duì)之間的距離。
在多數(shù)分子生物學(xué)家看來(lái),這種方法似乎違反直覺(jué),不過(guò)值得稱(chēng)贊的是,徐金波也獨(dú)立提出了類(lèi)似方法。畢竟,聯(lián)系才是最重要的。對(duì)于DeepMind的深度學(xué)習(xí)專(zhuān)家來(lái)說(shuō),很明顯距離是讓神經(jīng)網(wǎng)絡(luò)發(fā)揮作用更好的指標(biāo),科里表示。“這只是深度學(xué)習(xí)的基礎(chǔ)部分,如果與決策相關(guān)存在不確定性,最好是讓神經(jīng)網(wǎng)絡(luò)整合不確定性,并決定如何應(yīng)對(duì)。”他說(shuō)。與聯(lián)系不一樣,距離包含了神經(jīng)網(wǎng)絡(luò)可調(diào)整和使用的豐富信息。
DeepMind另一項(xiàng)讓人意外之處是引入第二個(gè)神經(jīng)網(wǎng)絡(luò),用于預(yù)測(cè)氨基酸對(duì)之間的角度。有了距離和角度兩個(gè)因素,DeepMind的算法就能夠算出蛋白質(zhì)結(jié)構(gòu)的大致輪廓。然后,系統(tǒng)使用另一種非人工智能算法改進(jìn)結(jié)構(gòu)。DeepMind將相關(guān)組件整合到名為AlphaFold的系統(tǒng)中,橫掃了2018年CASP(又稱(chēng)為第13屆CASP,因?yàn)槭莾赡暌欢缺荣惻e辦第13次。)比賽里結(jié)構(gòu)最復(fù)雜的43種蛋白質(zhì)中,AlphaFold在25種蛋白質(zhì)中得分最高。第二名僅在三種蛋白質(zhì)里得到高分。研究結(jié)果震驚了全行業(yè)。如果說(shuō)之前還有人懷疑深度學(xué)習(xí)究竟是不是解決蛋白質(zhì)折疊問(wèn)題最有希望的方法,AlphaFold讓所有人再無(wú)疑問(wèn)。
回到白板
盡管如此,DeepMind還遠(yuǎn)沒(méi)有達(dá)到哈薩比斯的目標(biāo),即完全解決蛋白質(zhì)折疊問(wèn)題。AlphaFold準(zhǔn)確率只有一半,第13屆CASP的104個(gè)蛋白質(zhì)中,準(zhǔn)確度可以達(dá)到X射線(xiàn)晶體衍射水平的只有三個(gè)。“我們不只想在CASP競(jìng)賽中奪魁,而是想真正解決問(wèn)題。我們想打造對(duì)生物學(xué)家很重要的系統(tǒng)。”喬普說(shuō)。
2018年CASP的結(jié)果公布后不久,DeepMind就開(kāi)始加倍努力。喬普負(fù)責(zé)擴(kuò)大的團(tuán)隊(duì)。團(tuán)隊(duì)并未簡(jiǎn)單地在AlphaFold基礎(chǔ)上改進(jìn),而是返回原點(diǎn),集思廣益尋找完全不同的想法,他們希望新創(chuàng)意能夠幫軟件將精確度提升到更接近X射線(xiàn)晶體衍射級(jí)別。
喬普表示,接下來(lái)是整個(gè)項(xiàng)目中最可怕也最令人沮喪的時(shí)期之一,因?yàn)槭裁崔k法都沒(méi)有。“我們花了三個(gè)月,結(jié)果都達(dá)不到第13屆CASP的水平,開(kāi)始真正感覺(jué)到恐慌。”他說(shuō)。不過(guò)當(dāng)時(shí)研究人員的嘗試出現(xiàn)了一些改進(jìn),沒(méi)到6個(gè)月系統(tǒng)已經(jīng)比最初的AlphaFold有了明顯改進(jìn)。之后兩年里一直延續(xù)該模式,喬普說(shuō)。先是三個(gè)月一無(wú)所獲,接下來(lái)三個(gè)月快速發(fā)展,接著又是平臺(tái)期。
哈薩比斯說(shuō),DeepMind以前的項(xiàng)目也出現(xiàn)過(guò)類(lèi)似模式,包括圍棋項(xiàng)目,還有復(fù)雜的即時(shí)戰(zhàn)略游戲《星際爭(zhēng)霸2》項(xiàng)目。他說(shuō),公司克服問(wèn)題的管理策略就是交替采取兩種不同的工作方式。第一種哈薩比斯稱(chēng)之為“攻擊模式”,盡可能推動(dòng)團(tuán)隊(duì),追求當(dāng)前系統(tǒng)可以達(dá)到的極致表現(xiàn)。然后,全力以赴努力的效果似乎耗盡時(shí),他就開(kāi)始轉(zhuǎn)向所謂的“創(chuàng)新模式”。期間哈薩比斯不再對(duì)團(tuán)隊(duì)施加壓力,容忍甚至期待出現(xiàn)暫時(shí)性的后退,從而為研究人員和工程師提供修補(bǔ)新想法和嘗試新手段的空間。他說(shuō):“要鼓勵(lì)人們提出盡可能多的瘋狂想法,還要頭腦風(fēng)暴。”該模式通常能夠推動(dòng)性能出現(xiàn)新飛躍,讓團(tuán)隊(duì)切換回攻擊模式。
生日大禮
2019年11月21日,DeepMind蛋白質(zhì)折疊團(tuán)隊(duì)的研究員凱薩倫?圖雅蘇那科年滿(mǎn)30歲。這一天也會(huì)因?yàn)榱硪粋€(gè)原因值得紀(jì)念。圖雅蘇那科擁有牛津大學(xué)(University of Oxford)計(jì)算生物學(xué)博士學(xué)位,在團(tuán)隊(duì)里負(fù)責(zé)為蛋白質(zhì)折疊人工智能開(kāi)發(fā)新測(cè)試集,新款人工智能叫AlphaFold 2,是DeepMind為2020年的CASP競(jìng)賽新開(kāi)發(fā)的系統(tǒng)。那天早上她打開(kāi)辦公電腦時(shí),收到系統(tǒng)對(duì)一批大約50個(gè)蛋白質(zhì)序列預(yù)測(cè)的評(píng)估,所有序列均為最近才添加到蛋白質(zhì)數(shù)據(jù)庫(kù)中。她愣了一下,然后大吃一驚。AlphaFold 2確實(shí)一直在改進(jìn),但對(duì)該組蛋白質(zhì)的預(yù)測(cè)結(jié)果驚人地準(zhǔn)確。系統(tǒng)對(duì)好幾個(gè)蛋白質(zhì)結(jié)構(gòu)結(jié)構(gòu)預(yù)測(cè)誤差在1.5埃以?xún)?nèi),埃的距離單位相當(dāng)于十分之一納米,或大約一個(gè)原子的寬度。
自稱(chēng)“團(tuán)隊(duì)悲觀(guān)主義者”的圖雅蘇那科說(shuō),第一反應(yīng)并不是高興而是有點(diǎn)想吐。“我當(dāng)時(shí)很害怕。”她說(shuō)。結(jié)果實(shí)在太好,她以為是自己犯了錯(cuò),可能準(zhǔn)備測(cè)試集時(shí)無(wú)意中把人工智能在訓(xùn)練數(shù)據(jù)里見(jiàn)過(guò)的幾個(gè)蛋白質(zhì)加了進(jìn)來(lái)。如此一來(lái)AlphaFold 2基本上就可以作弊,輕易預(yù)測(cè)出準(zhǔn)確的結(jié)構(gòu)。圖雅蘇那科回憶說(shuō),當(dāng)時(shí)坐在DeepMind自助餐廳俯瞰倫敦的圣潘克拉斯車(chē)站(St. Pancras Station),一杯接一杯地喝茶努力平復(fù)心情。隨后,她和其他團(tuán)隊(duì)成員花了一整天,直到深夜才下班,之后幾天也是如此,他們坐在工作站旁埋頭梳理AlphaFold 2的訓(xùn)練數(shù)據(jù),希望找出錯(cuò)誤所在。
然而一個(gè)錯(cuò)誤也沒(méi)有。事實(shí)是,新系統(tǒng)在預(yù)測(cè)表現(xiàn)方面實(shí)現(xiàn)了巨大飛躍。AlphaFold 2與之前版本完全不同。人工智能不再只是各成分組合,一個(gè)用來(lái)預(yù)測(cè)氨基酸之間的距離,另一個(gè)預(yù)測(cè)角度,然后用第三個(gè)軟件聯(lián)系起來(lái)。現(xiàn)在的人工智能用單一的神經(jīng)網(wǎng)絡(luò)直接從DNA序列進(jìn)行推理。雖然系統(tǒng)仍然接受進(jìn)化信息,從而確定研究的蛋白質(zhì)是否與以前見(jiàn)過(guò)的蛋白質(zhì)有共同的祖先,并仔細(xì)檢查目標(biāo)蛋白質(zhì)的DNA序列與其他已知序列之間的一致性,但不再需要哪些氨基酸對(duì)共同進(jìn)化的明確數(shù)據(jù)。“我們并未提供更多信息,反而減少了信息。”喬普說(shuō)。系統(tǒng)可以自由地得出見(jiàn)解,即祖先何時(shí)可能決定蛋白質(zhì)的部分形狀,以及何時(shí)可能徹底偏離。換句話(huà)說(shuō),系統(tǒng)根據(jù)經(jīng)驗(yàn)培養(yǎng)出直覺(jué),就像老練的人類(lèi)科學(xué)家一樣。
新系統(tǒng)的核心是“注意力”機(jī)制,顧名思義,注意力是讓深度學(xué)習(xí)系統(tǒng)專(zhuān)注于某組輸入,并對(duì)相關(guān)輸入加大權(quán)重。舉例來(lái)說(shuō),在識(shí)別貓的系統(tǒng)里,系統(tǒng)可能學(xué)會(huì)注意耳朵的形狀,也會(huì)學(xué)習(xí)在鼻子附近尋找胡須。喬普比較了AlphaFold 2的功能與玩拼圖游戲,過(guò)程中“能夠?qū)⒛承┎糠制礈愒谝黄鸲曳浅4_定,得到不同的本地解決方案,然后想辦法將相關(guān)問(wèn)題連接起來(lái)。”喬普說(shuō),神經(jīng)網(wǎng)絡(luò)的中層已經(jīng)學(xué)會(huì)根據(jù)對(duì)DNA序列的分析推理幾何和空間排列,以及氨基酸對(duì)如何連接。
DeepMind曾經(jīng)在128個(gè)“張量處理核心”上訓(xùn)練AlphaFold 2,張量處理核心是在16塊專(zhuān)門(mén)用于深度學(xué)習(xí)的計(jì)算機(jī)芯片上創(chuàng)建的數(shù)字運(yùn)算大腦,芯片由谷歌設(shè)計(jì)并在數(shù)據(jù)中心使用,公司稱(chēng)連續(xù)運(yùn)行了數(shù)周。(128個(gè)專(zhuān)用的人工智能核心大約相當(dāng)于100到200塊強(qiáng)大的圖形處理芯片,可以在Xbox或PlayStation上呈現(xiàn)極其炫目的動(dòng)畫(huà)效果。)公司表示,經(jīng)過(guò)訓(xùn)練的系統(tǒng)提取DNA序列后“幾天內(nèi)”就能夠完成整個(gè)結(jié)構(gòu)預(yù)測(cè)。
AlphaFold 2與前一代相比有個(gè)優(yōu)勢(shì),就是提供可信程度,即系統(tǒng)對(duì)結(jié)構(gòu)里每種氨基酸的預(yù)測(cè)都有信心分?jǐn)?shù)。如果說(shuō)AlphaFold 2可以切實(shí)幫到生物學(xué)家和醫(yī)學(xué)研究人員,這項(xiàng)指標(biāo)至關(guān)重要,因?yàn)檠芯空咝枰宄螘r(shí)能夠合理依賴(lài)模型,以及何時(shí)需要更加謹(jǐn)慎。
盡管測(cè)試結(jié)果驚人,DeepMind仍然不能確定AlphaFold 2的預(yù)測(cè)效果。新冠病毒來(lái)襲時(shí),公司才得到重要的線(xiàn)索。今年3月,AlphaFold 2可以預(yù)測(cè)出六種與SARS-CoV-2(引發(fā)疫情的病毒)相關(guān)但未被研究的蛋白質(zhì)結(jié)構(gòu),后來(lái)科學(xué)家使用所謂低溫電子顯微鏡的經(jīng)驗(yàn)方法證實(shí)了其中一種。由此能夠充分看出AlphaFold 2對(duì)現(xiàn)實(shí)世界的影響力。
驚人的結(jié)果
CASP比賽在5月到8月之間舉行。蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)中心發(fā)布多批目標(biāo)蛋白質(zhì),之后參賽方提交結(jié)構(gòu)預(yù)測(cè)進(jìn)行評(píng)估。今年比賽排名于11月30日公布。
每次預(yù)測(cè)均可以得到“全球距離測(cè)試總分”,簡(jiǎn)稱(chēng)GDT的指標(biāo)評(píng)分,該指標(biāo)實(shí)際上看預(yù)測(cè)結(jié)果與通過(guò)實(shí)證方法(如X射線(xiàn)晶體衍射或電子顯微鏡)得到的結(jié)構(gòu)接近程度,單位為埃。CASP的主席穆?tīng)柼乇硎荆瑵M(mǎn)分是100分,如果得分能夠達(dá)到90分或以上,說(shuō)明與實(shí)證方法相當(dāng)。根據(jù)CASP組織者判斷的結(jié)構(gòu)難度,蛋白質(zhì)也會(huì)劃分不同的組。
穆?tīng)柼乜吹紸lphaFold 2的結(jié)果時(shí)簡(jiǎn)直不敢相信。他就像幾個(gè)月前的圖雅蘇那科一樣,剛開(kāi)始的想法是出錯(cuò)了。也許比賽中一些蛋白質(zhì)序列以前發(fā)表過(guò)?又或者DeepMind也許設(shè)法獲得了未發(fā)布數(shù)據(jù)的緩存?
為了核實(shí),他請(qǐng)位于德國(guó)圖賓的根馬克斯?普朗克發(fā)展生物學(xué)研究所(Max Planck Institute for Developmental Biology)的蛋白質(zhì)進(jìn)化系主任安德烈?盧帕斯幫忙驗(yàn)證。盧帕斯讓AlphaFold 2預(yù)測(cè)一個(gè)自己確信沒(méi)有見(jiàn)過(guò)的結(jié)構(gòu),因?yàn)楸R帕斯利用X射線(xiàn)結(jié)晶衍射從未成功觀(guān)測(cè)到該蛋白質(zhì)的關(guān)鍵部分。近十年來(lái),盧帕斯一直因?yàn)樵摬糠秩笔Ф鴤X筋,但就是觀(guān)測(cè)不到準(zhǔn)確的形狀。盧帕斯說(shuō),利用AlphaFold的預(yù)測(cè)后,他重新查看X射線(xiàn)數(shù)據(jù)。“沒(méi)到半小時(shí)就得出了正確結(jié)構(gòu)。”他說(shuō),“太令人吃驚了!”
2018年DeepMind在CASP中獲得成功以來(lái),諸多學(xué)術(shù)研究人員紛紛涌向深度學(xué)習(xí)技術(shù)。結(jié)果,該領(lǐng)域其他方面的表現(xiàn)都有所提高。在中等難度目標(biāo)方面,其他競(jìng)爭(zhēng)對(duì)手的平均最佳預(yù)測(cè)GDT得分為75,比兩年前提高了10分。不過(guò)還是完全追不上AlphaFold 2,因?yàn)樵撓到y(tǒng)預(yù)測(cè)蛋白質(zhì)結(jié)構(gòu)平均得分高達(dá)92,就算面對(duì)最復(fù)雜的蛋白質(zhì)平均得分也有87。穆?tīng)柼乇硎続lphaFold 2的預(yù)測(cè)“與實(shí)證方法不相上下”,比如X射線(xiàn)晶體衍射。得出該結(jié)論后,11月30日星期一CASP發(fā)表了重大聲明:50年前的蛋白質(zhì)折疊問(wèn)題已經(jīng)解決。
諾貝爾獎(jiǎng)獲得者、英國(guó)最負(fù)盛名的科學(xué)機(jī)構(gòu)皇家學(xué)會(huì)(The Royal Society)現(xiàn)任主席文基?拉馬克里希南表示,AlphaFold 2在蛋白質(zhì)折疊方面“取得了驚人的進(jìn)步”。有AlphaFold 2相助,X射線(xiàn)晶體衍射和電子顯微鏡之類(lèi)既昂貴又耗時(shí)的實(shí)證方法可能都會(huì)變成過(guò)去式。
蛋白質(zhì)結(jié)構(gòu)專(zhuān)家、曾任歐洲分子生物學(xué)實(shí)驗(yàn)室歐洲生物信息學(xué)研究所(European Molecular Biology Laboratory’s European Bioinformatics Institute)主任的珍妮特?桑頓表示,DeepMind的突破可以幫助科學(xué)家繪制出整個(gè)人類(lèi)“蛋白質(zhì)組”,即人體內(nèi)所有蛋白質(zhì)。目前人體蛋白質(zhì)中只有四分之一被用作藥物靶點(diǎn),如果能夠掌握其余蛋白質(zhì)結(jié)構(gòu),就可以為研發(fā)新療法創(chuàng)造巨大的機(jī)會(huì)。她還表示,人工智能軟件還能夠推動(dòng)蛋白質(zhì)工程發(fā)展,從而推動(dòng)可持續(xù)發(fā)展,幫科學(xué)家創(chuàng)造新作物品種,提升每英畝種植土地出產(chǎn)的營(yíng)養(yǎng)價(jià)值,還可能研究出可以消化塑料的酶。
不過(guò),當(dāng)前的問(wèn)題仍然是DeepMind如何應(yīng)用AlphaFold 2。哈薩比斯表示,公司將努力確保軟件“最大程度發(fā)揮積極的社會(huì)影響”,他也承認(rèn)公司尚未決定如何實(shí)現(xiàn),只說(shuō)明年某個(gè)時(shí)候?qū)⑿肌9_比斯還告訴《財(cái)富》雜志,DeepMind正在考慮如何圍繞系統(tǒng)開(kāi)發(fā)商業(yè)產(chǎn)品或建立合作伙伴關(guān)系。“系統(tǒng)對(duì)藥物研發(fā)以及制藥巨頭作用都非常大。”不過(guò)他表示,商業(yè)產(chǎn)品的具體形式也尚未決定。
對(duì)于DeepMind來(lái)說(shuō),如果嘗試商業(yè)化就意味著踏上新征程,而此前出售給Alphabet后公司還從來(lái)沒(méi)有擔(dān)心過(guò)收入。公司簡(jiǎn)單成立了名叫DeepMind Health的部門(mén),正在與英國(guó)國(guó)家醫(yī)療服務(wù)體系(U.K.’s National Health Service)合作開(kāi)發(fā)應(yīng)用程序,該應(yīng)用程序能夠識(shí)別出存在患急性腎損傷風(fēng)險(xiǎn)的醫(yī)院患者。但新聞報(bào)道稱(chēng)DeepMind的醫(yī)院合作伙伴違反英國(guó)的數(shù)據(jù)保護(hù)法向其提供數(shù)百萬(wàn)患者的醫(yī)療記錄后,合作陷入了爭(zhēng)論。2019年,DeepMind Health正式并入新的谷歌健康部門(mén)。當(dāng)時(shí)DeepMind表示,剝離健康業(yè)務(wù)可以專(zhuān)注自身的研究基礎(chǔ),而不必分心在谷歌已然很擅長(zhǎng)的領(lǐng)域(如數(shù)據(jù)安全和客戶(hù)支持)成立商業(yè)部門(mén)。
當(dāng)然了,即便DeepMind要推出商業(yè)產(chǎn)品,也不會(huì)是第一家嘗試商業(yè)化的人工智能研究公司。總部位于舊金山的OpenAI可能是最接近DeepMind的競(jìng)爭(zhēng)對(duì)手,如今越發(fā)商業(yè)化。去年,OpenAI發(fā)布的第一個(gè)商業(yè)產(chǎn)品,企業(yè)能夠使用人工智能界面將簡(jiǎn)短的手寫(xiě)提示組成連貫的長(zhǎng)文本。該人工智能被稱(chēng)為GPT,商業(yè)價(jià)值尚未得到證實(shí),而DeepMind的AlphaFold 2可能對(duì)制藥公司或生物技術(shù)初創(chuàng)企業(yè)產(chǎn)生根本性的影響。在反壟斷監(jiān)管者調(diào)查Alphabet之際,擁有商業(yè)上可行的產(chǎn)品可能是很好的保險(xiǎn),以防將來(lái)拆分Googleplex時(shí)DeepMind失去財(cái)大氣粗的母公司無(wú)條件支持。
有一點(diǎn)可以肯定,DeepMind在蛋白質(zhì)折疊領(lǐng)域的探索并未結(jié)束。CASP競(jìng)爭(zhēng)只是圍繞預(yù)測(cè)單個(gè)蛋白質(zhì)的結(jié)構(gòu)。在生物學(xué)和醫(yī)學(xué)領(lǐng)域,研究人員真正關(guān)心的通常是蛋白質(zhì)如何相互作用。一種蛋白質(zhì)是如何與另一種蛋白質(zhì)或與某種特定的小分子結(jié)合?酶如何分解蛋白質(zhì)?莫爾特說(shuō),預(yù)測(cè)相互作用和結(jié)合很可能成為未來(lái)CASP競(jìng)爭(zhēng)的主要關(guān)注點(diǎn)。喬普表示,下一步DeepMind打算應(yīng)對(duì)相關(guān)挑戰(zhàn)。
而在蛋白質(zhì)折疊以外的領(lǐng)域,AlphaFold 2的成功肯定也會(huì)發(fā)揮影響,將鼓勵(lì)其他人在重大科學(xué)問(wèn)題中應(yīng)用深入學(xué)習(xí)。比如發(fā)現(xiàn)新的亞原子粒子,探索暗物質(zhì)的奧秘,掌握核聚變或創(chuàng)造室溫超導(dǎo)體。科里表示,在天體物理學(xué)方面,DeepMind已經(jīng)發(fā)揮了積極的作用。Facebook的人工智能研究人員剛剛啟動(dòng)了深度學(xué)習(xí)項(xiàng)目,希望尋找新的化學(xué)催化劑。蛋白質(zhì)折疊是基礎(chǔ)科學(xué)當(dāng)中第一個(gè)由人工智能解決的謎團(tuán),但肯定不會(huì)是最后一個(gè)。(財(cái)富中文網(wǎng))
譯者:馮豐
審校:夏林
2016年3月13日深夜,氣溫相當(dāng)寒冷,兩名男子頭戴羊毛帽,身穿厚厚的外套,并肩走過(guò)韓國(guó)首爾市中心擁擠的街道。二人熱烈地交談,似乎完全忽視了周?chē)溩羽^和燒烤店霓虹燈的誘惑。他們此行韓國(guó)肩負(fù)重任,多年的努力終于能夠看到結(jié)果。最棒的是,他們剛剛成功了。
這次散步是為了慶祝。他們?nèi)〉玫某删蛯⑦M(jìn)一步鞏固他們?cè)谟?jì)算機(jī)史上的地位。在古老的戰(zhàn)略游戲圍棋領(lǐng)域里,他們開(kāi)發(fā)的人工智能軟件已經(jīng)充分掌握了個(gè)中奧秘,而且輕松擊敗了全球頂尖選手李世石。如今,兩人開(kāi)始討論下一個(gè)目標(biāo),身后跟蹤的紀(jì)錄片攝制組捕捉到了當(dāng)時(shí)的談話(huà)。
“告訴你,我們可以解決蛋白質(zhì)折疊問(wèn)題。”德米斯?哈薩比斯對(duì)同伴大衛(wèi)?西爾弗說(shuō)。“那才是大成就。我相信現(xiàn)在能夠去做了。以前我只是想過(guò),現(xiàn)在肯定可以做成。”哈薩比斯是總部位于倫敦的人工智能公司DeepMind的聯(lián)合創(chuàng)始人及首席執(zhí)行官,正是該公司開(kāi)發(fā)出了AlphaGo(阿爾法狗)。西爾弗則是DeepMind的計(jì)算機(jī)科學(xué)家,負(fù)責(zé)領(lǐng)導(dǎo)AlphaGo團(tuán)隊(duì)。
四年后,DeepMind實(shí)現(xiàn)了當(dāng)年哈薩比斯在首爾散步時(shí)的設(shè)想。公司開(kāi)發(fā)出了人工智能系統(tǒng),能夠根據(jù)基因序列來(lái)預(yù)測(cè)蛋白質(zhì)的復(fù)雜形狀,精確到單個(gè)原子寬度。靠著這項(xiàng)成就,DeepMind完成了需要近50年才能完成的科學(xué)探索。1972年,化學(xué)家克里斯蒂安?安芬森在諾貝爾獎(jiǎng)獲獎(jiǎng)演說(shuō)中提出,只有DNA才可以完全決定蛋白質(zhì)的最終結(jié)構(gòu)。這是驚人的猜想。當(dāng)時(shí)連一個(gè)基因組都未完成測(cè)序。安芬森的理論開(kāi)創(chuàng)了計(jì)算生物學(xué)的分支,目標(biāo)是用復(fù)雜的數(shù)學(xué)模擬蛋白質(zhì)結(jié)構(gòu),而不是實(shí)驗(yàn)。
DeepMind在圍棋方面取得的成就確實(shí)很重要,但在圍棋和計(jì)算機(jī)科學(xué)這兩個(gè)相對(duì)偏僻的領(lǐng)域之外,幾乎沒(méi)有產(chǎn)生什么具體影響。解決蛋白質(zhì)折疊問(wèn)題則完全不同,對(duì)大多數(shù)人來(lái)說(shuō)都有變革意義。蛋白質(zhì)是生命的基本組成部分,也是大多數(shù)生物過(guò)程背后的運(yùn)行機(jī)制。如果能夠預(yù)測(cè)蛋白質(zhì)的結(jié)構(gòu),將徹底改變?nèi)藗儗?duì)疾病的理解,還可以為癌癥到老年癡呆癥等各種疾病開(kāi)發(fā)全新也更具針對(duì)性的藥物。新藥上市時(shí)間有望加快,藥物研發(fā)成本減少數(shù)年時(shí)間,成本也節(jié)約數(shù)億美元,還可能會(huì)拯救很多生命。
DeepMind首創(chuàng)的新方法在抗擊SARS-CoV-2(也就是新冠病毒)的斗爭(zhēng)中已經(jīng)取得成果。以下是以游戲知名的公司如何揭開(kāi)生物學(xué)最大秘密的故事。
形狀莫測(cè)的積木
“蛋白質(zhì)是細(xì)胞的主要機(jī)器。”加州大學(xué)伯克利分校的生物工程教授伊恩?霍姆斯表示。蛋白質(zhì)的結(jié)構(gòu)和形狀對(duì)其工作方式至關(guān)重要,構(gòu)成蛋白質(zhì)分子晶格的小“口袋”是發(fā)生各種化學(xué)反應(yīng)的地方。如果能夠找到某種化學(xué)物質(zhì)與其中一個(gè)口袋結(jié)合,這種物質(zhì)就可以作為藥物阻止或加速生物過(guò)程。生物工程師還能夠創(chuàng)造出自然界中從未出現(xiàn)的全新蛋白質(zhì),而且具有獨(dú)特的療效。“如果我們可以利用蛋白質(zhì)的力量,合理地設(shè)計(jì)用途,就能夠制造出神奇的自我組裝機(jī)器,發(fā)揮一些作用。”霍姆斯說(shuō)。
但為了確保蛋白質(zhì)達(dá)到想要的效果,把握其形狀很重要。
蛋白質(zhì)由氨基酸鏈組成,常被比作細(xì)繩上的珠子。至于珠子按照什么順序穿起來(lái),信息都存儲(chǔ)在DNA里。但是,根據(jù)簡(jiǎn)單的基因指令很難預(yù)測(cè)完整的鏈條會(huì)形成多復(fù)雜的物理形狀。氨基酸鏈根據(jù)分子間吸引和排斥的電化學(xué)規(guī)則折疊成某種結(jié)構(gòu)。形狀常常類(lèi)似繩索和絲帶纏繞而成的抽象雕塑:褶皺的帶狀物加上莫比烏斯帶,就像卷曲環(huán)狀的螺旋。20世紀(jì)60年代,物理學(xué)家和分子生物學(xué)家塞勒斯?列文塔爾發(fā)現(xiàn),一種蛋白質(zhì)的形狀有太多可能性。如果想通過(guò)隨機(jī)嘗試組合找出蛋白質(zhì)的準(zhǔn)確結(jié)構(gòu),花的時(shí)間比已知宇宙的年齡還長(zhǎng)。而且,幾毫秒內(nèi)蛋白質(zhì)就會(huì)完成折疊。該觀(guān)察被稱(chēng)為列文塔爾悖論。
到目前為止,只有通過(guò)所謂X射線(xiàn)晶體衍射才可以接近準(zhǔn)確了解蛋白質(zhì)的結(jié)構(gòu)。顧名思義,首先需要將含有數(shù)百萬(wàn)蛋白質(zhì)的溶液轉(zhuǎn)化為晶體,本身就是很復(fù)雜的化學(xué)過(guò)程。然后,X射線(xiàn)發(fā)射到晶體上,科學(xué)家從獲得的衍射圖逆向工作,從而建立蛋白質(zhì)圖像。而且,還不是隨便什么X射線(xiàn)都可以。要想獲得很多蛋白質(zhì)的結(jié)構(gòu),要由圓形的,大小堪比體育場(chǎng)的同步加速器發(fā)射X射線(xiàn)。
過(guò)程既昂貴又耗時(shí)。根據(jù)多倫多大學(xué)(University of Toronto)的研究人員估計(jì),用X射線(xiàn)晶體衍射法測(cè)定單個(gè)蛋白質(zhì)的結(jié)構(gòu)需要約12個(gè)月,花費(fèi)約12萬(wàn)美元。已知的蛋白質(zhì)超過(guò)2億種,每年大約能夠發(fā)現(xiàn)3000萬(wàn)種,但其中只有不到20萬(wàn)種蛋白質(zhì)通過(guò)X射線(xiàn)晶體衍射或其他實(shí)驗(yàn)方法繪制出了結(jié)構(gòu)圖。“人類(lèi)的無(wú)知程度正在迅速增長(zhǎng)。”計(jì)算物理學(xué)家約翰?喬普說(shuō),現(xiàn)在他擔(dān)任DeepMind的高級(jí)研究員,負(fù)責(zé)領(lǐng)導(dǎo)蛋白質(zhì)折疊團(tuán)隊(duì)。
過(guò)去50年里,自從克里斯蒂安?安芬森發(fā)表著名演講以來(lái),科學(xué)家們一直努力使用高性能計(jì)算機(jī)上運(yùn)行的復(fù)雜數(shù)學(xué)模型加速分析蛋白質(zhì)結(jié)構(gòu)。“基本上就是嘗試在計(jì)算機(jī)里創(chuàng)建蛋白質(zhì)的數(shù)字雙胞胎,然后嘗試操作。”馬里蘭大學(xué)的細(xì)胞生物學(xué)和分子遺傳學(xué)教授約翰?穆?tīng)柼卣f(shuō),他也是用數(shù)學(xué)算法通過(guò)DNA序列預(yù)測(cè)蛋白質(zhì)結(jié)構(gòu)的先驅(qū)。問(wèn)題是,預(yù)測(cè)出的折疊模式經(jīng)常有誤,與科學(xué)家通過(guò)X射線(xiàn)晶體衍射發(fā)現(xiàn)的結(jié)構(gòu)并不一致。事實(shí)上大約10年前,很少有模型預(yù)測(cè)大蛋白質(zhì)形狀時(shí)準(zhǔn)確率可以超過(guò)三分之一。
蛋白質(zhì)折疊模擬要占用龐大的算力。2000年,研究人員創(chuàng)建了名叫Fold@home的“公民科學(xué)”項(xiàng)目,人們能夠捐出個(gè)人電腦和游戲機(jī)的閑置處理能力運(yùn)行蛋白質(zhì)折疊模擬。所有設(shè)備通過(guò)互聯(lián)網(wǎng)連接在一起,從而打造全世界最強(qiáng)大的虛擬超級(jí)計(jì)算機(jī)之一。大家都希望幫研究人員擺脫列文塔爾悖論,通過(guò)隨機(jī)實(shí)驗(yàn)和試錯(cuò)準(zhǔn)確判斷蛋白質(zhì)的結(jié)構(gòu)。目前該項(xiàng)目仍然在進(jìn)行中,已經(jīng)為超過(guò)225篇論文提供了數(shù)據(jù),研究?jī)?nèi)容是與多種疾病相關(guān)的蛋白質(zhì)。
盡管擁有強(qiáng)大的處理能力,F(xiàn)old@home仍然深陷列文塔爾悖論,因?yàn)樗惴ㄔ噲D搜索所有可能的排列,從而找到蛋白質(zhì)結(jié)構(gòu)。破解蛋白質(zhì)折疊的關(guān)鍵在于跳過(guò)艱苦搜索的過(guò)程,發(fā)現(xiàn)蛋白質(zhì)DNA序列與結(jié)構(gòu)聯(lián)系的神秘模式,從而讓計(jì)算機(jī)踏上全新捷徑,直接從遺傳學(xué)領(lǐng)域轉(zhuǎn)到準(zhǔn)確繪制形狀。
嚴(yán)肅的游戲
德米斯?哈薩比斯對(duì)蛋白質(zhì)折疊的興趣始于一場(chǎng)游戲,他對(duì)很多事都是這樣。哈薩比斯曾經(jīng)是國(guó)際象棋天才,13歲時(shí)已經(jīng)成為大師,一度在同年齡里排名世界第二。他對(duì)象棋的熱愛(ài)后來(lái)轉(zhuǎn)向?qū)杉赂信d趣:一是游戲設(shè)計(jì),二是研究自身意識(shí)的內(nèi)在機(jī)制。他高中時(shí)開(kāi)始為電子游戲公司工作,在劍橋大學(xué)(University of Cambridge)學(xué)習(xí)計(jì)算機(jī)科學(xué)后,1998年創(chuàng)立了電腦游戲初創(chuàng)公司Elixir Studios。
盡管曾經(jīng)研發(fā)出兩款獲獎(jiǎng)游戲,最終Elixir還是賣(mài)掉知識(shí)產(chǎn)權(quán)并關(guān)閉公司,哈薩比斯從倫敦大學(xué)學(xué)院(University College London)獲得了認(rèn)知神經(jīng)科學(xué)博士學(xué)位。彼時(shí)他已經(jīng)開(kāi)始踏上漫漫征途,后來(lái)2010年聯(lián)合創(chuàng)立了DeepMind。他開(kāi)始研發(fā)通用人工智能軟件,不僅可以學(xué)習(xí)執(zhí)行很多任務(wù),有些甚至比人類(lèi)完成得更好。哈薩比斯曾經(jīng)說(shuō)過(guò),DeepMind的遠(yuǎn)大目標(biāo)是“解決智能問(wèn)題,然后解決所有其他問(wèn)題。”哈薩比斯也曾經(jīng)暗示,蛋白質(zhì)折疊可能就是“其他問(wèn)題”里的第一批。
2009年,哈薩比斯在麻省理工學(xué)院(Massachusetts Institute of Technology)攻讀博士后時(shí),聽(tīng)說(shuō)了一款名為Foldit的在線(xiàn)游戲。Foldit是由華盛頓大學(xué)(University of Washington)的研究人員設(shè)計(jì),跟Fold@home類(lèi)似,也是有關(guān)蛋白質(zhì)折疊的“公民科學(xué)”項(xiàng)目。但Foldit并不是整合閑置的微芯片,而是利用閑置的大腦。
Foldit是類(lèi)似益智游戲的游戲,并不掌握生物學(xué)領(lǐng)域知識(shí)的人類(lèi)玩家比賽折疊蛋白質(zhì),如果能夠得到合理的形狀就可以獲得積分。然后,研究人員分析得分最高的設(shè)計(jì),看是否有助于破解蛋白質(zhì)結(jié)構(gòu)問(wèn)題。游戲已經(jīng)吸引成千上萬(wàn)玩家,并且一些記錄案例中得到的蛋白質(zhì)結(jié)構(gòu)比研究蛋白質(zhì)折疊的計(jì)算機(jī)算法更準(zhǔn)確。“從這個(gè)角度來(lái)看,我覺(jué)得游戲很有趣,想著能不能利用游戲的上癮性和游戲的樂(lè)趣,不僅讓人們玩得開(kāi)心,也做一些對(duì)科學(xué)有用的事情。”哈薩比斯說(shuō)。
Foldit能夠抓住哈薩比斯的想象力還有另一個(gè)原因。其實(shí)游戲是一種強(qiáng)化學(xué)習(xí)行為,特別適合訓(xùn)練人工智能。軟件可以通過(guò)試驗(yàn)和試錯(cuò)從經(jīng)驗(yàn)中學(xué)習(xí),從而更好地完成任務(wù)。在游戲里軟件能夠無(wú)休止地試驗(yàn),反復(fù)地玩,逐步改進(jìn),不對(duì)現(xiàn)實(shí)世界造成傷害的情況下提升技能水平,直到超過(guò)人類(lèi)。游戲也有現(xiàn)成的方法判斷某個(gè)特定的動(dòng)作或某組動(dòng)作是否有效,即積分和勝利。種種指標(biāo)可以提供非常明確的標(biāo)準(zhǔn)衡量表現(xiàn),在現(xiàn)實(shí)世界很多問(wèn)題里則無(wú)法如此處理。現(xiàn)實(shí)世界遇到問(wèn)題時(shí),最有效的方法可能比較模糊,“獲勝”的概念也可能不適用。
DeepMind的基礎(chǔ)主要是將強(qiáng)化學(xué)習(xí)與稱(chēng)為深度學(xué)習(xí)的人工智能相結(jié)合。深度學(xué)習(xí)是基于神經(jīng)網(wǎng)絡(luò)的人工智能,所謂神經(jīng)網(wǎng)絡(luò)是大致基于人腦工作原理的軟件。這種情況下,軟件沒(méi)有實(shí)際的神經(jīng)細(xì)胞網(wǎng)絡(luò),而是一堆虛擬神經(jīng)元分層排列,初始輸入層接收數(shù)據(jù),按照權(quán)重分配后傳遞到中間層,中間層依次執(zhí)行相同操作,最終傳遞到輸出層,輸出層匯總各項(xiàng)加權(quán)值并算出結(jié)果。網(wǎng)絡(luò)能夠調(diào)整各項(xiàng)權(quán)重,直到產(chǎn)生理想的結(jié)果,例如準(zhǔn)確識(shí)別貓的照片或國(guó)際象棋獲勝。之所以被稱(chēng)為“深度學(xué)習(xí)”,并不是因?yàn)楫a(chǎn)生的結(jié)果一定深刻,當(dāng)然也有可能深刻,但主要原因是網(wǎng)絡(luò)由許多層構(gòu)成,所以可以說(shuō)具有深度。
DeepMind最初成功是用“深度強(qiáng)化學(xué)習(xí)”創(chuàng)建軟件,自學(xué)玩經(jīng)典的雅達(dá)利電腦游戲,如《乒乓球》(Pong)、《突圍》(Breakout)和《太空入侵者》(Space Invaders)等,而且水平超過(guò)人類(lèi)。正是這一成就讓DeepMind受到谷歌(Google)等科技巨頭的關(guān)注,據(jù)報(bào)道,2014年谷歌以4億英鎊(當(dāng)時(shí)超過(guò)6億美元)收購(gòu)了DeepMind。之后公司主攻圍棋并開(kāi)發(fā)了AlphaGo系統(tǒng),2016年擊敗了李世石。DeepMind接著開(kāi)發(fā)了名叫AlphaZero的更通用系統(tǒng)版本,幾乎能夠?qū)W會(huì)所有兩玩家回合制游戲,在這種游戲中,玩家都可以獲得充分信息(沒(méi)有機(jī)會(huì)隱藏信息,例如牌面朝下放置或隱藏位置)。去年,公司開(kāi)發(fā)的系統(tǒng)還在高度復(fù)雜的即時(shí)戰(zhàn)略游戲《星際爭(zhēng)霸2》(Starcraft 2)中擊敗了頂尖的人類(lèi)職業(yè)電競(jìng)玩家。
但哈薩比斯表示,一直認(rèn)為公司在游戲方面的探索是完善人工智能系統(tǒng)的方式,之后能夠應(yīng)用于現(xiàn)實(shí)世界挑戰(zhàn),尤其是科學(xué)領(lǐng)域。“比賽只是訓(xùn)練場(chǎng),但訓(xùn)練到底為了什么?最終是為了創(chuàng)造新知識(shí)。”他說(shuō)。
DeepMind并非具有產(chǎn)品和客戶(hù)的傳統(tǒng)業(yè)務(wù),本質(zhì)上是推動(dòng)人工智能前沿的研究實(shí)驗(yàn)室。公司的很多開(kāi)發(fā)方法都已經(jīng)公開(kāi),供所有人使用或借鑒。不過(guò)某些方面的進(jìn)步對(duì)姊妹公司谷歌也頗有幫助。
DeepMind團(tuán)隊(duì)由工程師和科學(xué)家組成,幫助谷歌將尖端的人工智能技術(shù)融入產(chǎn)品。DeepMind的技術(shù)已經(jīng)滲透各處,從谷歌地圖(Google Maps)到數(shù)字助理,再到協(xié)助管理安卓手機(jī)電池電量的系統(tǒng)。谷歌為此向DeepMind支付費(fèi)用,母公司Alphabet繼續(xù)承擔(dān)DeepMind帶來(lái)的額外虧損。虧損規(guī)模并不小,2018年,公司虧損4.7億英鎊(當(dāng)時(shí)約合5.1億美元),這也是通過(guò)英國(guó)的商業(yè)注冊(cè)機(jī)構(gòu)公司登記局(Companies House)可以查到的最新一年公開(kāi)記錄。
不過(guò)如今員工超過(guò)1000人的DeepMind,還有一整個(gè)部門(mén)只負(fù)責(zé)人工智能的科學(xué)應(yīng)用。該部門(mén)的負(fù)責(zé)人為39歲的印度人普什米?科里,他加入DeepMind之前曾經(jīng)在微軟從事人工智能研究。他表示,DeepMind的目標(biāo)是解決“根節(jié)點(diǎn)”問(wèn)題,這是數(shù)據(jù)科學(xué)家的慣用語(yǔ),意思是希望解決能夠解鎖很多科學(xué)路徑的基礎(chǔ)問(wèn)題。蛋白質(zhì)折疊就是根節(jié)點(diǎn)之一,科里說(shuō)。
“蛋白質(zhì)折疊的奧運(yùn)會(huì)”
1994年,當(dāng)很多科學(xué)家剛開(kāi)始使用復(fù)雜的計(jì)算機(jī)算法預(yù)測(cè)蛋白質(zhì)折疊方式時(shí),馬里蘭大學(xué)的生物學(xué)家墨爾特決定開(kāi)辦競(jìng)賽,用公正的方法評(píng)估哪種算法最好。他把比賽稱(chēng)為蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)關(guān)鍵評(píng)估(簡(jiǎn)稱(chēng)為CASP),之后每?jī)赡昱e辦一次。
賽事具體如下,美國(guó)國(guó)立衛(wèi)生研究院資助的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)中心主辦CASP,并說(shuō)服從事X射線(xiàn)晶體衍射和其他實(shí)證研究的研究人員提供尚未公布的蛋白質(zhì)結(jié)構(gòu),要求在CASP競(jìng)賽結(jié)束之前不公開(kāi)相關(guān)結(jié)構(gòu)。然后CASP將蛋白質(zhì)DNA序列發(fā)給參賽者,參賽者用算法預(yù)測(cè)蛋白質(zhì)結(jié)構(gòu)。CASP判斷預(yù)測(cè)與X射線(xiàn)晶體學(xué)家和實(shí)驗(yàn)學(xué)家發(fā)現(xiàn)的實(shí)際結(jié)構(gòu)接近程度,然后根據(jù)算法對(duì)各種蛋白質(zhì)預(yù)測(cè)的平均得分排名。“我稱(chēng)之為蛋白質(zhì)折疊界的奧運(yùn)會(huì)。”哈薩比斯說(shuō)。2016年AlphaGo擊敗李世石后不久,DeepMind就打算贏得金牌。
DeepMind組建了小規(guī)模精干的團(tuán)隊(duì),由六名機(jī)器學(xué)習(xí)研究人員和工程師組成。“讓‘通才’入手是我們的理念。”哈薩比斯說(shuō)。公司里并不缺乏人才。“前物理學(xué)家、前生物學(xué)家,大家都四處閑逛。”哈薩比斯有點(diǎn)啼笑皆非。“他們永遠(yuǎn)不知道之前的專(zhuān)業(yè)知識(shí)什么時(shí)候可以突然發(fā)揮作用。”最后團(tuán)隊(duì)成員增加到20人左右。
不過(guò),DeepMind還是認(rèn)為團(tuán)隊(duì)里至少要有一位真正的蛋白質(zhì)折疊專(zhuān)家,后來(lái)選中了約翰?喬普。35歲的喬普像個(gè)大男孩,瘦得皮包骨,一頭蓬亂斜梳的棕色頭發(fā),有點(diǎn)像20世紀(jì)90年代末高中車(chē)庫(kù)樂(lè)隊(duì)的低音吉他手。他在劍橋大學(xué)獲得理論凝聚態(tài)物理碩士學(xué)位,之后在紐約由對(duì)沖基金億萬(wàn)富翁大衛(wèi)?肖創(chuàng)立的獨(dú)立研究實(shí)驗(yàn)室D.E.Shaw Research工作。實(shí)驗(yàn)室專(zhuān)門(mén)研究計(jì)算生物學(xué),包括蛋白質(zhì)模擬。后來(lái)喬普在芝加哥大學(xué)獲得了計(jì)算生物物理學(xué)博士學(xué)位,導(dǎo)師為卡爾?弗里德和托賓?索斯尼克,兩位科學(xué)家皆因推動(dòng)蛋白質(zhì)折疊模型進(jìn)步出名。“我曾經(jīng)聽(tīng)說(shuō)DeepMind對(duì)解決蛋白質(zhì)結(jié)構(gòu)有興趣。”他說(shuō)。于是他申請(qǐng)并順利加入。
哈薩比斯和DeepMind團(tuán)隊(duì)的第一直覺(jué)是,蛋白質(zhì)折疊能夠用與圍棋完全相同的方式解決,即深度強(qiáng)化學(xué)習(xí)。事實(shí)證明存在問(wèn)題。首先,蛋白質(zhì)折疊結(jié)構(gòu)的可能性比圍棋的步數(shù)還要多。更重要的是,DeepMind讓工智能系統(tǒng)AlphaGo與自己對(duì)弈就可以掌握圍棋的玩法。“所以可比性并不高,因?yàn)榈鞍踪|(zhì)折疊不是雙人游戲。”哈薩比斯說(shuō),“有點(diǎn)違背自然。”
DeepMind很快發(fā)現(xiàn),如果使用所謂監(jiān)督式深度學(xué)習(xí)的人工智能培訓(xùn)方法,就能夠更簡(jiǎn)便地取得進(jìn)步。這是大多數(shù)商業(yè)應(yīng)用里使用的人工智能,神經(jīng)網(wǎng)絡(luò)通過(guò)一組既定數(shù)據(jù)輸入和相應(yīng)輸出,可以學(xué)習(xí)如何將給定的輸入與給定輸出相匹配。具體到蛋白質(zhì)結(jié)構(gòu),DeepMind已經(jīng)掌握約170000個(gè)蛋白質(zhì)結(jié)構(gòu),能夠作為訓(xùn)練數(shù)據(jù)。蛋白質(zhì)數(shù)據(jù)庫(kù)(PDB)是已知三維蛋白質(zhì)形狀及遺傳序列的公共存儲(chǔ)庫(kù),可以公開(kāi)查詢(xún)相關(guān)結(jié)構(gòu)。
一些生物學(xué)家已經(jīng)使用監(jiān)督式深度學(xué)習(xí)預(yù)測(cè)蛋白質(zhì)如何折疊。但此類(lèi)人工智能系統(tǒng)表現(xiàn)最佳的正確率也只有50%,對(duì)生物學(xué)家或醫(yī)學(xué)研究人員沒(méi)有什么幫助,尤其是對(duì)結(jié)構(gòu)未知的蛋白質(zhì),因?yàn)闊o(wú)法確定某次特定預(yù)測(cè)是否正確。
有種技術(shù)很有希望,其理念是基于蛋白質(zhì)的進(jìn)化史劃分為不同的家族。各種家族里可能在一個(gè)DNA序列中找到相距遙遠(yuǎn)但似乎會(huì)同時(shí)突變的氨基酸對(duì)。此類(lèi)所謂“共同進(jìn)化”的現(xiàn)象很有幫助,因?yàn)楣餐M(jìn)化的蛋白質(zhì)很可能在蛋白質(zhì)折疊結(jié)構(gòu)中有聯(lián)系。位于芝加哥的豐田技術(shù)研究所(Toyota Technological Institute)的科學(xué)家徐金波(音譯)率先利用深入學(xué)習(xí)共同進(jìn)化數(shù)據(jù)預(yù)測(cè)氨基酸聯(lián)系。這種方法有點(diǎn)像是在連接點(diǎn)游戲里尋找點(diǎn)。科學(xué)家仍然要用其他軟件找出點(diǎn)之間的線(xiàn),過(guò)程中經(jīng)常出錯(cuò)。有時(shí)候連點(diǎn)都找不準(zhǔn)。
在2018年的CASP競(jìng)賽中,DeepMind應(yīng)用了共同進(jìn)化和預(yù)測(cè)聯(lián)系的基本思想,但增加了兩個(gè)重要的轉(zhuǎn)折點(diǎn)。首先,系統(tǒng)沒(méi)有試圖確定兩個(gè)氨基酸是否有聯(lián)系,也就是二進(jìn)制輸出(即兩個(gè)氨基酸可能有聯(lián)系,也可能沒(méi)有聯(lián)系),而是決定讓算法預(yù)測(cè)蛋白質(zhì)里所有氨基酸對(duì)之間的距離。
在多數(shù)分子生物學(xué)家看來(lái),這種方法似乎違反直覺(jué),不過(guò)值得稱(chēng)贊的是,徐金波也獨(dú)立提出了類(lèi)似方法。畢竟,聯(lián)系才是最重要的。對(duì)于DeepMind的深度學(xué)習(xí)專(zhuān)家來(lái)說(shuō),很明顯距離是讓神經(jīng)網(wǎng)絡(luò)發(fā)揮作用更好的指標(biāo),科里表示。“這只是深度學(xué)習(xí)的基礎(chǔ)部分,如果與決策相關(guān)存在不確定性,最好是讓神經(jīng)網(wǎng)絡(luò)整合不確定性,并決定如何應(yīng)對(duì)。”他說(shuō)。與聯(lián)系不一樣,距離包含了神經(jīng)網(wǎng)絡(luò)可調(diào)整和使用的豐富信息。
DeepMind另一項(xiàng)讓人意外之處是引入第二個(gè)神經(jīng)網(wǎng)絡(luò),用于預(yù)測(cè)氨基酸對(duì)之間的角度。有了距離和角度兩個(gè)因素,DeepMind的算法就能夠算出蛋白質(zhì)結(jié)構(gòu)的大致輪廓。然后,系統(tǒng)使用另一種非人工智能算法改進(jìn)結(jié)構(gòu)。DeepMind將相關(guān)組件整合到名為AlphaFold的系統(tǒng)中,橫掃了2018年CASP(又稱(chēng)為第13屆CASP,因?yàn)槭莾赡暌欢缺荣惻e辦第13次。)比賽里結(jié)構(gòu)最復(fù)雜的43種蛋白質(zhì)中,AlphaFold在25種蛋白質(zhì)中得分最高。第二名僅在三種蛋白質(zhì)里得到高分。研究結(jié)果震驚了全行業(yè)。如果說(shuō)之前還有人懷疑深度學(xué)習(xí)究竟是不是解決蛋白質(zhì)折疊問(wèn)題最有希望的方法,AlphaFold讓所有人再無(wú)疑問(wèn)。
回到白板
盡管如此,DeepMind還遠(yuǎn)沒(méi)有達(dá)到哈薩比斯的目標(biāo),即完全解決蛋白質(zhì)折疊問(wèn)題。AlphaFold準(zhǔn)確率只有一半,第13屆CASP的104個(gè)蛋白質(zhì)中,準(zhǔn)確度可以達(dá)到X射線(xiàn)晶體衍射水平的只有三個(gè)。“我們不只想在CASP競(jìng)賽中奪魁,而是想真正解決問(wèn)題。我們想打造對(duì)生物學(xué)家很重要的系統(tǒng)。”喬普說(shuō)。
2018年CASP的結(jié)果公布后不久,DeepMind就開(kāi)始加倍努力。喬普負(fù)責(zé)擴(kuò)大的團(tuán)隊(duì)。團(tuán)隊(duì)并未簡(jiǎn)單地在AlphaFold基礎(chǔ)上改進(jìn),而是返回原點(diǎn),集思廣益尋找完全不同的想法,他們希望新創(chuàng)意能夠幫軟件將精確度提升到更接近X射線(xiàn)晶體衍射級(jí)別。
喬普表示,接下來(lái)是整個(gè)項(xiàng)目中最可怕也最令人沮喪的時(shí)期之一,因?yàn)槭裁崔k法都沒(méi)有。“我們花了三個(gè)月,結(jié)果都達(dá)不到第13屆CASP的水平,開(kāi)始真正感覺(jué)到恐慌。”他說(shuō)。不過(guò)當(dāng)時(shí)研究人員的嘗試出現(xiàn)了一些改進(jìn),沒(méi)到6個(gè)月系統(tǒng)已經(jīng)比最初的AlphaFold有了明顯改進(jìn)。之后兩年里一直延續(xù)該模式,喬普說(shuō)。先是三個(gè)月一無(wú)所獲,接下來(lái)三個(gè)月快速發(fā)展,接著又是平臺(tái)期。
哈薩比斯說(shuō),DeepMind以前的項(xiàng)目也出現(xiàn)過(guò)類(lèi)似模式,包括圍棋項(xiàng)目,還有復(fù)雜的即時(shí)戰(zhàn)略游戲《星際爭(zhēng)霸2》項(xiàng)目。他說(shuō),公司克服問(wèn)題的管理策略就是交替采取兩種不同的工作方式。第一種哈薩比斯稱(chēng)之為“攻擊模式”,盡可能推動(dòng)團(tuán)隊(duì),追求當(dāng)前系統(tǒng)可以達(dá)到的極致表現(xiàn)。然后,全力以赴努力的效果似乎耗盡時(shí),他就開(kāi)始轉(zhuǎn)向所謂的“創(chuàng)新模式”。期間哈薩比斯不再對(duì)團(tuán)隊(duì)施加壓力,容忍甚至期待出現(xiàn)暫時(shí)性的后退,從而為研究人員和工程師提供修補(bǔ)新想法和嘗試新手段的空間。他說(shuō):“要鼓勵(lì)人們提出盡可能多的瘋狂想法,還要頭腦風(fēng)暴。”該模式通常能夠推動(dòng)性能出現(xiàn)新飛躍,讓團(tuán)隊(duì)切換回攻擊模式。
生日大禮
2019年11月21日,DeepMind蛋白質(zhì)折疊團(tuán)隊(duì)的研究員凱薩倫?圖雅蘇那科年滿(mǎn)30歲。這一天也會(huì)因?yàn)榱硪粋€(gè)原因值得紀(jì)念。圖雅蘇那科擁有牛津大學(xué)(University of Oxford)計(jì)算生物學(xué)博士學(xué)位,在團(tuán)隊(duì)里負(fù)責(zé)為蛋白質(zhì)折疊人工智能開(kāi)發(fā)新測(cè)試集,新款人工智能叫AlphaFold 2,是DeepMind為2020年的CASP競(jìng)賽新開(kāi)發(fā)的系統(tǒng)。那天早上她打開(kāi)辦公電腦時(shí),收到系統(tǒng)對(duì)一批大約50個(gè)蛋白質(zhì)序列預(yù)測(cè)的評(píng)估,所有序列均為最近才添加到蛋白質(zhì)數(shù)據(jù)庫(kù)中。她愣了一下,然后大吃一驚。AlphaFold 2確實(shí)一直在改進(jìn),但對(duì)該組蛋白質(zhì)的預(yù)測(cè)結(jié)果驚人地準(zhǔn)確。系統(tǒng)對(duì)好幾個(gè)蛋白質(zhì)結(jié)構(gòu)結(jié)構(gòu)預(yù)測(cè)誤差在1.5埃以?xún)?nèi),埃的距離單位相當(dāng)于十分之一納米,或大約一個(gè)原子的寬度。
自稱(chēng)“團(tuán)隊(duì)悲觀(guān)主義者”的圖雅蘇那科說(shuō),第一反應(yīng)并不是高興而是有點(diǎn)想吐。“我當(dāng)時(shí)很害怕。”她說(shuō)。結(jié)果實(shí)在太好,她以為是自己犯了錯(cuò),可能準(zhǔn)備測(cè)試集時(shí)無(wú)意中把人工智能在訓(xùn)練數(shù)據(jù)里見(jiàn)過(guò)的幾個(gè)蛋白質(zhì)加了進(jìn)來(lái)。如此一來(lái)AlphaFold 2基本上就可以作弊,輕易預(yù)測(cè)出準(zhǔn)確的結(jié)構(gòu)。圖雅蘇那科回憶說(shuō),當(dāng)時(shí)坐在DeepMind自助餐廳俯瞰倫敦的圣潘克拉斯車(chē)站(St. Pancras Station),一杯接一杯地喝茶努力平復(fù)心情。隨后,她和其他團(tuán)隊(duì)成員花了一整天,直到深夜才下班,之后幾天也是如此,他們坐在工作站旁埋頭梳理AlphaFold 2的訓(xùn)練數(shù)據(jù),希望找出錯(cuò)誤所在。
然而一個(gè)錯(cuò)誤也沒(méi)有。事實(shí)是,新系統(tǒng)在預(yù)測(cè)表現(xiàn)方面實(shí)現(xiàn)了巨大飛躍。AlphaFold 2與之前版本完全不同。人工智能不再只是各成分組合,一個(gè)用來(lái)預(yù)測(cè)氨基酸之間的距離,另一個(gè)預(yù)測(cè)角度,然后用第三個(gè)軟件聯(lián)系起來(lái)。現(xiàn)在的人工智能用單一的神經(jīng)網(wǎng)絡(luò)直接從DNA序列進(jìn)行推理。雖然系統(tǒng)仍然接受進(jìn)化信息,從而確定研究的蛋白質(zhì)是否與以前見(jiàn)過(guò)的蛋白質(zhì)有共同的祖先,并仔細(xì)檢查目標(biāo)蛋白質(zhì)的DNA序列與其他已知序列之間的一致性,但不再需要哪些氨基酸對(duì)共同進(jìn)化的明確數(shù)據(jù)。“我們并未提供更多信息,反而減少了信息。”喬普說(shuō)。系統(tǒng)可以自由地得出見(jiàn)解,即祖先何時(shí)可能決定蛋白質(zhì)的部分形狀,以及何時(shí)可能徹底偏離。換句話(huà)說(shuō),系統(tǒng)根據(jù)經(jīng)驗(yàn)培養(yǎng)出直覺(jué),就像老練的人類(lèi)科學(xué)家一樣。
新系統(tǒng)的核心是“注意力”機(jī)制,顧名思義,注意力是讓深度學(xué)習(xí)系統(tǒng)專(zhuān)注于某組輸入,并對(duì)相關(guān)輸入加大權(quán)重。舉例來(lái)說(shuō),在識(shí)別貓的系統(tǒng)里,系統(tǒng)可能學(xué)會(huì)注意耳朵的形狀,也會(huì)學(xué)習(xí)在鼻子附近尋找胡須。喬普比較了AlphaFold 2的功能與玩拼圖游戲,過(guò)程中“能夠?qū)⒛承┎糠制礈愒谝黄鸲曳浅4_定,得到不同的本地解決方案,然后想辦法將相關(guān)問(wèn)題連接起來(lái)。”喬普說(shuō),神經(jīng)網(wǎng)絡(luò)的中層已經(jīng)學(xué)會(huì)根據(jù)對(duì)DNA序列的分析推理幾何和空間排列,以及氨基酸對(duì)如何連接。
DeepMind曾經(jīng)在128個(gè)“張量處理核心”上訓(xùn)練AlphaFold 2,張量處理核心是在16塊專(zhuān)門(mén)用于深度學(xué)習(xí)的計(jì)算機(jī)芯片上創(chuàng)建的數(shù)字運(yùn)算大腦,芯片由谷歌設(shè)計(jì)并在數(shù)據(jù)中心使用,公司稱(chēng)連續(xù)運(yùn)行了數(shù)周。(128個(gè)專(zhuān)用的人工智能核心大約相當(dāng)于100到200塊強(qiáng)大的圖形處理芯片,可以在Xbox或PlayStation上呈現(xiàn)極其炫目的動(dòng)畫(huà)效果。)公司表示,經(jīng)過(guò)訓(xùn)練的系統(tǒng)提取DNA序列后“幾天內(nèi)”就能夠完成整個(gè)結(jié)構(gòu)預(yù)測(cè)。
AlphaFold 2與前一代相比有個(gè)優(yōu)勢(shì),就是提供可信程度,即系統(tǒng)對(duì)結(jié)構(gòu)里每種氨基酸的預(yù)測(cè)都有信心分?jǐn)?shù)。如果說(shuō)AlphaFold 2可以切實(shí)幫到生物學(xué)家和醫(yī)學(xué)研究人員,這項(xiàng)指標(biāo)至關(guān)重要,因?yàn)檠芯空咝枰宄螘r(shí)能夠合理依賴(lài)模型,以及何時(shí)需要更加謹(jǐn)慎。
盡管測(cè)試結(jié)果驚人,DeepMind仍然不能確定AlphaFold 2的預(yù)測(cè)效果。新冠病毒來(lái)襲時(shí),公司才得到重要的線(xiàn)索。今年3月,AlphaFold 2可以預(yù)測(cè)出六種與SARS-CoV-2(引發(fā)疫情的病毒)相關(guān)但未被研究的蛋白質(zhì)結(jié)構(gòu),后來(lái)科學(xué)家使用所謂低溫電子顯微鏡的經(jīng)驗(yàn)方法證實(shí)了其中一種。由此能夠充分看出AlphaFold 2對(duì)現(xiàn)實(shí)世界的影響力。
驚人的結(jié)果
CASP比賽在5月到8月之間舉行。蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)中心發(fā)布多批目標(biāo)蛋白質(zhì),之后參賽方提交結(jié)構(gòu)預(yù)測(cè)進(jìn)行評(píng)估。今年比賽排名于11月30日公布。
每次預(yù)測(cè)均可以得到“全球距離測(cè)試總分”,簡(jiǎn)稱(chēng)GDT的指標(biāo)評(píng)分,該指標(biāo)實(shí)際上看預(yù)測(cè)結(jié)果與通過(guò)實(shí)證方法(如X射線(xiàn)晶體衍射或電子顯微鏡)得到的結(jié)構(gòu)接近程度,單位為埃。CASP的主席穆?tīng)柼乇硎荆瑵M(mǎn)分是100分,如果得分能夠達(dá)到90分或以上,說(shuō)明與實(shí)證方法相當(dāng)。根據(jù)CASP組織者判斷的結(jié)構(gòu)難度,蛋白質(zhì)也會(huì)劃分不同的組。
穆?tīng)柼乜吹紸lphaFold 2的結(jié)果時(shí)簡(jiǎn)直不敢相信。他就像幾個(gè)月前的圖雅蘇那科一樣,剛開(kāi)始的想法是出錯(cuò)了。也許比賽中一些蛋白質(zhì)序列以前發(fā)表過(guò)?又或者DeepMind也許設(shè)法獲得了未發(fā)布數(shù)據(jù)的緩存?
為了核實(shí),他請(qǐng)位于德國(guó)圖賓的根馬克斯?普朗克發(fā)展生物學(xué)研究所(Max Planck Institute for Developmental Biology)的蛋白質(zhì)進(jìn)化系主任安德烈?盧帕斯幫忙驗(yàn)證。盧帕斯讓AlphaFold 2預(yù)測(cè)一個(gè)自己確信沒(méi)有見(jiàn)過(guò)的結(jié)構(gòu),因?yàn)楸R帕斯利用X射線(xiàn)結(jié)晶衍射從未成功觀(guān)測(cè)到該蛋白質(zhì)的關(guān)鍵部分。近十年來(lái),盧帕斯一直因?yàn)樵摬糠秩笔Ф鴤X筋,但就是觀(guān)測(cè)不到準(zhǔn)確的形狀。盧帕斯說(shuō),利用AlphaFold的預(yù)測(cè)后,他重新查看X射線(xiàn)數(shù)據(jù)。“沒(méi)到半小時(shí)就得出了正確結(jié)構(gòu)。”他說(shuō),“太令人吃驚了!”
2018年DeepMind在CASP中獲得成功以來(lái),諸多學(xué)術(shù)研究人員紛紛涌向深度學(xué)習(xí)技術(shù)。結(jié)果,該領(lǐng)域其他方面的表現(xiàn)都有所提高。在中等難度目標(biāo)方面,其他競(jìng)爭(zhēng)對(duì)手的平均最佳預(yù)測(cè)GDT得分為75,比兩年前提高了10分。不過(guò)還是完全追不上AlphaFold 2,因?yàn)樵撓到y(tǒng)預(yù)測(cè)蛋白質(zhì)結(jié)構(gòu)平均得分高達(dá)92,就算面對(duì)最復(fù)雜的蛋白質(zhì)平均得分也有87。穆?tīng)柼乇硎続lphaFold 2的預(yù)測(cè)“與實(shí)證方法不相上下”,比如X射線(xiàn)晶體衍射。得出該結(jié)論后,11月30日星期一CASP發(fā)表了重大聲明:50年前的蛋白質(zhì)折疊問(wèn)題已經(jīng)解決。
諾貝爾獎(jiǎng)獲得者、英國(guó)最負(fù)盛名的科學(xué)機(jī)構(gòu)皇家學(xué)會(huì)(The Royal Society)現(xiàn)任主席文基?拉馬克里希南表示,AlphaFold 2在蛋白質(zhì)折疊方面“取得了驚人的進(jìn)步”。有AlphaFold 2相助,X射線(xiàn)晶體衍射和電子顯微鏡之類(lèi)既昂貴又耗時(shí)的實(shí)證方法可能都會(huì)變成過(guò)去式。
蛋白質(zhì)結(jié)構(gòu)專(zhuān)家、曾任歐洲分子生物學(xué)實(shí)驗(yàn)室歐洲生物信息學(xué)研究所(European Molecular Biology Laboratory’s European Bioinformatics Institute)主任的珍妮特?桑頓表示,DeepMind的突破可以幫助科學(xué)家繪制出整個(gè)人類(lèi)“蛋白質(zhì)組”,即人體內(nèi)所有蛋白質(zhì)。目前人體蛋白質(zhì)中只有四分之一被用作藥物靶點(diǎn),如果能夠掌握其余蛋白質(zhì)結(jié)構(gòu),就可以為研發(fā)新療法創(chuàng)造巨大的機(jī)會(huì)。她還表示,人工智能軟件還能夠推動(dòng)蛋白質(zhì)工程發(fā)展,從而推動(dòng)可持續(xù)發(fā)展,幫科學(xué)家創(chuàng)造新作物品種,提升每英畝種植土地出產(chǎn)的營(yíng)養(yǎng)價(jià)值,還可能研究出可以消化塑料的酶。
不過(guò),當(dāng)前的問(wèn)題仍然是DeepMind如何應(yīng)用AlphaFold 2。哈薩比斯表示,公司將努力確保軟件“最大程度發(fā)揮積極的社會(huì)影響”,他也承認(rèn)公司尚未決定如何實(shí)現(xiàn),只說(shuō)明年某個(gè)時(shí)候?qū)⑿肌9_比斯還告訴《財(cái)富》雜志,DeepMind正在考慮如何圍繞系統(tǒng)開(kāi)發(fā)商業(yè)產(chǎn)品或建立合作伙伴關(guān)系。“系統(tǒng)對(duì)藥物研發(fā)以及制藥巨頭作用都非常大。”不過(guò)他表示,商業(yè)產(chǎn)品的具體形式也尚未決定。
對(duì)于DeepMind來(lái)說(shuō),如果嘗試商業(yè)化就意味著踏上新征程,而此前出售給Alphabet后公司還從來(lái)沒(méi)有擔(dān)心過(guò)收入。公司簡(jiǎn)單成立了名叫DeepMind Health的部門(mén),正在與英國(guó)國(guó)家醫(yī)療服務(wù)體系(U.K.’s National Health Service)合作開(kāi)發(fā)應(yīng)用程序,該應(yīng)用程序能夠識(shí)別出存在患急性腎損傷風(fēng)險(xiǎn)的醫(yī)院患者。但新聞報(bào)道稱(chēng)DeepMind的醫(yī)院合作伙伴違反英國(guó)的數(shù)據(jù)保護(hù)法向其提供數(shù)百萬(wàn)患者的醫(yī)療記錄后,合作陷入了爭(zhēng)論。2019年,DeepMind Health正式并入新的谷歌健康部門(mén)。當(dāng)時(shí)DeepMind表示,剝離健康業(yè)務(wù)可以專(zhuān)注自身的研究基礎(chǔ),而不必分心在谷歌已然很擅長(zhǎng)的領(lǐng)域(如數(shù)據(jù)安全和客戶(hù)支持)成立商業(yè)部門(mén)。
當(dāng)然了,即便DeepMind要推出商業(yè)產(chǎn)品,也不會(huì)是第一家嘗試商業(yè)化的人工智能研究公司。總部位于舊金山的OpenAI可能是最接近DeepMind的競(jìng)爭(zhēng)對(duì)手,如今越發(fā)商業(yè)化。去年,OpenAI發(fā)布的第一個(gè)商業(yè)產(chǎn)品,企業(yè)能夠使用人工智能界面將簡(jiǎn)短的手寫(xiě)提示組成連貫的長(zhǎng)文本。該人工智能被稱(chēng)為GPT,商業(yè)價(jià)值尚未得到證實(shí),而DeepMind的AlphaFold 2可能對(duì)制藥公司或生物技術(shù)初創(chuàng)企業(yè)產(chǎn)生根本性的影響。在反壟斷監(jiān)管者調(diào)查Alphabet之際,擁有商業(yè)上可行的產(chǎn)品可能是很好的保險(xiǎn),以防將來(lái)拆分Googleplex時(shí)DeepMind失去財(cái)大氣粗的母公司無(wú)條件支持。
有一點(diǎn)可以肯定,DeepMind在蛋白質(zhì)折疊領(lǐng)域的探索并未結(jié)束。CASP競(jìng)爭(zhēng)只是圍繞預(yù)測(cè)單個(gè)蛋白質(zhì)的結(jié)構(gòu)。在生物學(xué)和醫(yī)學(xué)領(lǐng)域,研究人員真正關(guān)心的通常是蛋白質(zhì)如何相互作用。一種蛋白質(zhì)是如何與另一種蛋白質(zhì)或與某種特定的小分子結(jié)合?酶如何分解蛋白質(zhì)?莫爾特說(shuō),預(yù)測(cè)相互作用和結(jié)合很可能成為未來(lái)CASP競(jìng)爭(zhēng)的主要關(guān)注點(diǎn)。喬普表示,下一步DeepMind打算應(yīng)對(duì)相關(guān)挑戰(zhàn)。
而在蛋白質(zhì)折疊以外的領(lǐng)域,AlphaFold 2的成功肯定也會(huì)發(fā)揮影響,將鼓勵(lì)其他人在重大科學(xué)問(wèn)題中應(yīng)用深入學(xué)習(xí)。比如發(fā)現(xiàn)新的亞原子粒子,探索暗物質(zhì)的奧秘,掌握核聚變或創(chuàng)造室溫超導(dǎo)體。科里表示,在天體物理學(xué)方面,DeepMind已經(jīng)發(fā)揮了積極的作用。Facebook的人工智能研究人員剛剛啟動(dòng)了深度學(xué)習(xí)項(xiàng)目,希望尋找新的化學(xué)催化劑。蛋白質(zhì)折疊是基礎(chǔ)科學(xué)當(dāng)中第一個(gè)由人工智能解決的謎團(tuán),但肯定不會(huì)是最后一個(gè)。(財(cái)富中文網(wǎng))
譯者:馮豐
審校:夏林
It is March 13, 2016. Two men, dressed in winter coats and woolen hats to defend against the frigid night air, walk side by side through the crowded streets of downtown Seoul. Locked in animated conversation, they seem oblivious to the pulsating neon enticements of the surrounding dumpling houses and barbecue joints. They are visitors, having come to South Korea on a mission, the culmination of years of effort—and they have just succeeded.
This is a celebratory stroll. What they have achieved will cement their places in the annals of computer science: They have built a piece of artificial intelligence software able to play the ancient strategy game Go so expertly that it handily defeated the world’s top player, Lee Sedol. Now the two men are discussing their next goal, their conversation captured by a documentary film crew shadowing them.
“I’m telling you, we can solve protein folding,” Demis Hassabis says to his walking companion, David Silver. “That’s like, I mean, it’s just huge. I am sure we can do that now. I thought we could do that before, but now we definitely can do it.” Hassabis is the cofounder and chief executive officer of DeepMind, the London-based A.I. company that built AlphaGo. Silver is the DeepMind computer scientist who led the AlphaGo team.
Four years later, DeepMind has just accomplished what Hassabis broached in that nocturnal amble: It has created an A.I. system that can predict the complex shapes of proteins down to an atom’s-width accuracy from the genetic sequences that encode them. With this achievement, DeepMind has completed an almost 50-year-old scientific quest. In 1972, in his Nobel Prize acceptance speech, chemist Christian Anfinsen postulated that DNA alone should fully determine the final structure a protein takes. It was a remarkable conjecture. At the time, not a single genome had been sequenced yet. But Anfinsen’s theory launched an entire subfield of computational biology with the goal of using complex mathematics, instead of empirical experiments, to model proteins.
DeepMind’s achievement with Go was important—but it had little concrete impact outside the relatively cliquish worlds of Go and computer science. Solving protein folding is different: It could prove transformative for much of humanity. Proteins are the basic building blocks of life and the mechanism behind most biological processes. Being able to predict their structure could revolutionize our understanding of disease and lead to new, more targeted pharmaceuticals for disorders from cancer to Alzheimer’s disease. It will likely accelerate the time it takes to bring new medicines to market, potentially shaving years and hundreds of millions of dollars in costs from drug development, and potentially saving lives as a result.
The new method pioneered by DeepMind is already yielding results in the fight against SARS-CoV-2, the virus that causes COVID-19. What follows is the story of how a company best known for playing games came to unlock one of biology’s greatest secrets.
Building blocks with elusive shapes
“Proteins are the main machines of the cell,” Ian Holmes, a professor of bioengineering at the University of California at Berkeley, says. “And the structure and shape of them is crucial to how they operate.” Small “pockets” within the lattice of molecules that make up the protein are where various chemical reactions take place. If you can find a chemical that will bind to one of these pockets, then that substance can be used as a drug—to either disable or accelerate a biological process. Bioengineers can also create entirely new proteins never before seen in nature with unique therapeutic properties. “If we could tap into the power of proteins and rationally engineer them to any purpose, then we could build these remarkable self-assembling machines that could do things for us,” Holmes says.
But to be sure the protein will do what you want, it’s important to know its shape.
Proteins consist of chains of amino acids, often compared to beads on a string. The recipe for which beads to string in what order is encoded in DNA. But the complex physical shape the completed chain will take is extremely difficult to predict from those simple genetic instructions. Amino acid chains collapse—or fold—into a structure based on electrochemical rules of attraction and repulsion between molecules. The resulting shapes frequently resemble abstract sculptures formed from tangles of cord and ribbon: pleated banderoles joined to M?bius strip–like curlicues and looping helixes. In the 1960s, Cyrus Levinthal, a physicist and molecular biologist, determined that there were so many plausible shapes a protein might assume that it would take longer than the known age of the universe to arrive at the correct structure by randomly trying combinations—and yet, the protein folds itself in milliseconds. This observation has become known as Levinthal’s Paradox.
Until now, the only way to know a protein’s structure with near certainty was through a method known as X-ray crystallography. As the name implies, this involves turning solutions of millions of proteins into crystals, a chemical process that is itself tricky. X-rays are then fired at these crystals, allowing a scientist to work backward from the diffraction patterns they make to build up a picture of the protein itself. Oh, and not just any X-rays: For many proteins, the X-rays need to be produced by a massive, stadium-size circular particle accelerator called a synchrotron.
The process is expensive and time-consuming: It takes about 12 months and approximately $120,000 to determine a single protein’s structure with X-ray crystallography, according to one estimate from researchers at the University of Toronto. There are over 200 million known proteins, with about 30 million more being discovered every year, and yet fewer than 200,000 of these have had their structures mapped with X-ray crystallography or other experimental methods. “Our level of ignorance is growing rapidly,” says John Jumper, a computational physicist who is now a senior researcher at DeepMind and leads its protein-folding team.
Over the past 50 years, ever since Christian Anfinsen’s famous speech, scientists have tried speed up the analysis of protein structure by using complex mathematical models run on high-powered computers. “What you do is essentially try to create a digital twin of the protein in your computer, and then try to manipulate it,” says John Moult, a professor of cell biology and molecular genetics at the University of Maryland and a pioneer in using mathematical algorithms to predict protein structures from their DNA sequences. The problem is, these predicted folding patterns were frequently wrong, failing to match the structures scientists found through X-ray crystallography. In fact, until about 10 years ago, few models were able to accurately predict more than about a third of a large protein’s shape.
Some protein-folding simulations also take up tremendous amounts of computing power. In the year 2000, researchers created a “citizens science” project called Fold@home in which people could donate the idle processing capacity of their personal computers and game consoles to run a protein-folding simulation. All those devices, chained together through the Internet, created one of the world’s most powerful virtual supercomputers. The hope was that this would allow researchers to escape Levinthal’s Paradox—to speed up the time it would take to hit upon the accurate protein structures through random trial and error. The project, which is still running, has provided data for more than 225 scientific papers on proteins implicated in a number of diseases.
But despite having access to so much processing power, Fold@home is still mired in Levinthal's Paradox: It is trying to find a protein structure by searching through all possible permutations. The holy grail of protein folding is to skip this laborious search and to instead discover elusive patterns that link a protein’s DNA sequence to its structure—allowing a computer to take a radical shortcut, leaping directly from genetics to the correct shape.
Games with a serious purpose
Demis Hassabis’s interest in protein folding began, as many of Hassabis’s passions do, with a game. Hassabis is a former chess prodigy, a master by the time he was 13 and at one time ranked second in the world for his age. His love of chess fed a fascination with two things: game design and the inner mechanisms of his own mind. He began working for a video games company while still in high school and, after studying computer science at the University of Cambridge, founded his own computer games startup, Elixir Studios, in 1998.
Despite producing two award-winning games, Elixir eventually sold off its intellectual property and shut down, and Hassabis went on to get a Ph.D. in cognitive neuroscience from University College London. By then, he had already embarked on the crusade that would lead him to cofound DeepMind in 2010: the creation of artificial general intelligence—software capable of learning to perform many disparate tasks as well or better than people. DeepMind’s lofty goal, Hassabis once said, was “to solve intelligence, and then use it to solve everything else.” Hassabis already had an inkling that protein folding just might be one of those first “everything elses.”
Hassabis was doing a postdoc at the Massachusetts Institute of Technology in 2009 when he heard about an online game called Foldit. Foldit was designed by researchers at the University of Washington and, like Fold@home, it was a “citizens science” project for protein folding. But instead of yoking together idle microchips, Foldit was designed to harness idle brains.
Foldit is a puzzle-like game in which human players, without any knowledge of biology, compete to fold proteins, earning points for creating shapes that are plausible. Researchers then analyze the highest-scoring designs to see if they can help complete unsolved protein structures. The game has attracted tens of thousands of players and, in a number of documented cases, produced better protein structures than protein-folding computer algorithms. “I thought it was fascinating from the standpoint of, can we use the addictiveness of games and the joy of them, and in the background not only are they having fun, but they are doing something useful for science,” Hassabis says.
But there was another reason Foldit would continue to capture Hassabis’s imagination. Games are a particularly good arena for a kind of A.I. training called reinforcement learning. This is where software learns from experience, essentially by trial and error, to get better at a task. In a computer game, software can experiment endlessly, playing over and over again, improving gradually until it reaches superhuman skill, without causing any real-world harm. Games also have ready-made and unambiguous ways to tell if a particular action or set of actions is effective: points and wins. Those metrics provide a very clear way to benchmark performance—something that doesn’t exist for many real-world problems, where the most effective move may be far more ambiguous and the entire concept of “winning” may not apply.
DeepMind was founded largely on the promise of combining reinforcement learning with a kind of A.I. called deep learning. Deep learning is A.I. based on neural networks—a kind of software loosely based on how the human brain works. In this case, instead of networks of actual nerve cells, the software has a bunch of virtual neurons, arranged in a hierarchy where an initial input layer takes in some data, applies a weighting to it, and passes it along to the middle layers, which do the same in turn, until it is eventually passed to an output layer that sums up all the weighted signals and uses that to produce a result. The network adjusts these weights until it can produce a desired outcome—such as accurately identifying photos of cats or winning a game of chess. It’s called “deep learning” not because the insights it produces are necessarily profound—although they can be—but because the network consists of many layers and so can be said to have depth.
DeepMind’s initial success came in using this “deep reinforcement learning” to create software that taught itself to play classic Atari computer games, such as Pong, Breakout, and Space Invaders, at superhuman levels. It was this achievement that helped get DeepMind noticed by big technology firms, including Google, which bought it for a reported £400 million (more than $600 million at the time) in 2014. It then turned its attention to Go, eventually creating the system AlphaGo, which defeated Sedol in 2016. DeepMind went on to create a more general version of that system, called AlphaZero, that could learn to play almost any two-player, turn-based game in which players have perfect information (so there is no element of chance or hidden information, such as face-down cards or hidden positions) at superhuman levels. Last year, it also built a system that could beat top human professional e-sports players at the highly complex real-time strategy game Starcraft 2.
But Hassabis says he always saw the company’s work with games as a way to perfect A.I. methods so they could be applied to real-world challenges—especially in science. “Games are just a training ground, but a training ground for what exactly? For creating new knowledge,” he says.
DeepMind is not a traditional business, with products and customers. Instead, it is essentially a research lab that tries to advance the frontiers of artificial intelligence. Many of the methods it develops, it publishes openly for anyone to use or build upon. But some of its advances are useful for its sister company, Google.
DeepMind has a whole team of engineers and scientists that help Google incorporate cutting-edge A.I. into its products. DeepMind’s technology has found its way into everything from Google Maps to the company’s digital assistant to the system that helps manage battery power on Android phones. Google pays DeepMind for this help, and Alphabet, its parent company, continues to absorb the additional losses that DeepMind generates. Those are not insignificant: The company lost £470 million in 2018 (about $510 million at the time), the last year for which its annual financial statements are publicly available through the U.K. business registry Companies House.
But DeepMind, which now employs more than 1,000 people, also has a whole other division that works only on scientific applications of A.I. It is headed by Pushmeet Kohli, a 39-year-old native of India, who worked on A.I. research for Microsoft before joining DeepMind. He says that DeepMind’s aim is to try to solve “root node” problems—data science-speak for saying it wants to take on issues that are fundamental to unlocking many different scientific avenues. Protein folding is one of these root nodes, Kohli says.
“The Olympics of protein folding”
In 1994, at a time when many scientists were first starting to use sophisticated computer algorithms to try to predict how proteins would fold, Moult, the University of Maryland biologist, decided to create a competition that could provide an unbiased way of assessing which of these algorithms was best. He called this competition the Critical Assessment of Protein Structure Prediction (CASP, for short), and it has been held biennially ever since.
It works like this: The Protein Structure Prediction Center, the organization that runs CASP and which is funded through the U.S. National Institute of General Medical Sciences, persuades researchers who do X-ray crystallography and other empirical studies to provide it with protein structures that have not yet been published anywhere, asking them to refrain from making the structures public until after the CASP competition. CASP then gives the DNA sequences of these proteins to the contestants, who use their algorithms to predict the protein’s structure. CASP then judges how close the predictions are to the actual structure the X-ray crystallographers and experimentalists found. The algorithms are then ranked by their average performance across all the proteins. “I call it the Olympics of protein folding,” Hassabis says. And, in 2016, shortly after AlphaGo beat Sedol, DeepMind set out to win the gold medal.
DeepMind established a small, crack team of a half-dozen machine learning researchers and engineers to work on the problem. “It’s part of our philosophy that we start with generalists,” Hassabis says. The company does not suffer from a lack of brain power. “Ex-physicists, ex-biologists, we just have them lying around generally,” Hassabis says with a wry smile. “They never know when their previous expertise suddenly is going to become useful.” Eventually the team grew to about 20 people.
Still, DeepMind decided it would be helpful to have at least one true protein-folding expert onboard. It found one in John Jumper. Skinny, with a mop of asymmetrically styled brown hair, Jumper is a boyish 35 and looks a bit like the bass guitarist in a late-1990s high school garage band. He earned a master’s degree in theoretical condensed matter physics from Cambridge before going on to work at D.E. Shaw Research in New York City, an independent research lab founded by hedge fund billionaire David Shaw. The lab specializes in computational biology, including the simulation of proteins. Jumper later got his Ph.D. in computational biophysics from the University of Chicago, studying under Karl Freed and Tobin Sosnick, two scientists known for advances in protein-fold modeling. “I had heard this rumor that DeepMind was interested in protein problems,” he says. He applied and got the job.
Hassabis’s and the DeepMind team’s first instinct was that protein folding could be solved in exactly the same way as Go—with deep reinforcement learning. But this proved problematic: For one thing, there were even more possible fold configurations than there are moves in Go. More importantly, DeepMind had mastered Go in large part by getting its A.I. system, AlphaGo, to play games against itself. “There isn’t quite the right analogy for that because protein folding is not a two-player game,” Hassabis says. “You’re sort of playing against Nature.”
DeepMind soon established that there was a simpler way of making progress using a kind of A.I. training known as supervised deep learning. This is the sort of A.I. used in most business applications: From an established set of data inputs and corresponding outputs, a neural network learns how to match a given input to a given output. In this case, DeepMind had the protein structures—currently about 170,000 of them—that are publicly available in the Protein Data Bank (PDB), a public repository of all known three-dimensional protein shapes and their genetic sequences, to use as training data.
Some biologists had already used supervised deep learning to predict how proteins would fold. But the best of these A.I. systems were right only about 50% of the time, which wasn’t particularly helpful to biologists or medical researchers—especially since, for a protein whose structure was unknown, they had no way of determining whether a particular prediction was correct.
One promising technique rested on the idea that proteins can be grouped into families based on their evolutionary history. And within these families, it is possible to find pairs of amino acids that are distant from one another in a DNA sequence, yet seem to mutate at the same time. This phenomenon, which is called “coevolution,” is helpful because coevolved proteins are likely to be in contact within the protein’s folded structure. Jinbo Xu, a scientist at the Toyota Technological Institute in Chicago, pioneered using deep learning on this coevolutionary data to predict amino acid contacts. The approach is a bit like finding just the dots in a connect-the-dots game. Scientists still had to use other software to try to figure out the lines between those dots—and often they got this wrong. Sometimes they didn’t even get the dots right.
For the 2018 CASP competition, DeepMind took these basic ideas about coevolution and contact prediction but added two important twists. First, rather than trying to determine if two amino acids were in contact, a binary output (either the pair is in contact or isn’t), it decided to ask the algorithm to predict the distance between all the amino acid pairs in the protein.
To most molecular biologists, such an approach seemed counterintuitive—although Xu, to his credit, had independently proposed a similar method. After all, it was contact that mattered most. But to DeepMind’s deep learning experts it was immediately obvious that distance was a much better metric for a neural network to work on, Kohli says. “It is just a fundamental part of deep learning that if you have some uncertainty associated with a decision, it is much better to have the neural network incorporate that uncertainty and decide what to do about it,” he says. Distance, unlike contact, was a richer piece of information the network could adjust and play with.
The other twist DeepMind came up with was a second neural network that predicted the angles between amino acid pairs. With these two factors—distance and angles—DeepMind’s algorithm was able to work out a rough outline of a protein’s likely structure. It then used a different, non-A.I. algorithm to refine this structure. Putting these components together into a system it called AlphaFold, DeepMind crushed the competition in the 2018 CASP (called CASP13 because it was the 13th of the biennial contests). On the hardest set of 43 proteins in the competition, AlphaFold got the highest score on 25 of them. The next closest team scored highest on just three. The results shook the entire field: If there had been any doubt about whether deep learning methods were the most promising way to crack the protein-folding problem, AlphaFold ended them.
Going back to the whiteboard
Still, DeepMind was nowhere close to Hassabis’s goal: solving the protein-folding problem. AlphaFold was fairly inaccurate almost half the time. And, of the 104 protein targets in CASP13, it achieved results that were as good as X-ray crystallography in only about three cases. “We didn’t just want to be the best at this according to CASP, we wanted to be good at this. We actually want a system that matters to biologists,” Jumper says.
No sooner had the CASP 2018 results been announced than DeepMind redoubled its efforts: Jumper was put in charge of the expanded team. Rather than simply trying to build on AlphaFold, making incremental improvements, the team went back to the whiteboard and started to brainstorm radically different ideas that they hoped would be able to bring the software closer to the kind of accuracy X-ray crystallography yielded.
What followed, Jumper says, was one of scariest and most depressing periods of the entire project: nothing worked. “We spent three months not getting any better than our CASP13 results and starting to really panic,” he says. But then, a few of the things the researchers were trying produced a slight improvement—and within six months the system was notably better than the original AlphaFold. This pattern would continue throughout the next two years, Jumper says: three months of nothing, followed by three months of rapid progress, followed by yet another plateau.
Hassabis says a similar pattern had occurred with previous DeepMind projects, including its work on Go and the complex, real-time strategy video game Starcraft 2. The company’s management strategy for overcoming this, he says, is to alternate between two different ways of working. The first, which Hassabis calls “strike mode,” involves pushing the team as hard as possible to wring every ounce of performance out of an existing system. Then, when the gains from the all-out effort seem to be exhausted, he shifts gears into what he calls “creative mode.” During this period, Hassabis no longer presses the team on performance—in fact, he tolerates and even expects some temporary declines—in order to give the researchers and engineers the space to tinker with new ideas and try novel approaches. “You want to encourage as many crazy ideas as possible, brainstorming,” he says. This often leads to another leap forward in performance, allowing the team to switch back into strike mode.
A big birthday present
On Nov. 21 of 2019, Kathryn Tunyasuvunakool, a researcher at DeepMind who works on the protein folding team, turned 30. The day would prove to be memorable for another reason too. Tunyasuvunakool, who has a Ph.D. in computational biology from the University of Oxford, was the person on the team in charge of developing new test sets for the protein-folding A.I., now dubbed AlphaFold 2, that DeepMind was developing for the 2020 CASP competition. That morning, when she turned on her office computer, she received an assessment of the system’s predictions on a batch of about 50 protein sequences—all of them only recently added to the Protein Data Bank. She did a double take. AlphaFold 2 had been improving, but on this set of proteins the results were startlingly good—predicting the structure in many cases to within 1.5 angstroms, a distance equivalent to a tenth of a nanometer, or about the width of an atom.
Tunyasuvunakool, who calls herself “the team’s pessimist,” says her first response was not elation, but nausea. “I was feeling quite scared,” she says. The results were so good she was certain she had made a mistake—that when she was preparing the test set, she must have inadvertently allowed several proteins that the A.I. had already seen in the training data to slip in. That would have allowed AlphaFold 2 to essentially cheat, easily predicting the exact structure. Tunyasuvunakool recalls sitting in DeepMind’s cafeteria overlooking London’s St. Pancras Station and drinking cup after cup of herbal tea in an effort to calm herself. She and other team members then spent the rest of that day and late into the evening, and several days more, sitting at their workstations, painstakingly combing through AlphaFold 2’s training data to try to find the mistake.
There wasn’t one. In fact, the new system had made a giant leap forward in performance. AlphaFold 2 was completely different from its predecessor. Rather than an assemblage of components—one to predict the distance between amino acids and another to forecast the angles, with a third piece of software to tie them together —the A.I. now used a single neural network to reason directly from the DNA sequence. While the system still took in evolutionary information—figuring out if the protein in question had a likely common ancestor to others it had seen before, and scrutinizing the alignment between the target protein’s DNA sequence and other known sequences—it no longer needed explicit data about which amino acid pairs evolved together. “Instead of providing more information, we actually provided less,” Jumper says. The system was free to draw its own insights about when ancestry might determine a portion of the protein’s shape and when it might depart more radically from that heritage. In other words, it developed a kind of intuition based on its experience, in much the same way a veteran human scientist might.
At the heart of the new system was a mechanism called "attention." Attention, as the name implies, is a way to get a deep learning system to focus on a certain set of inputs and weigh those more heavily. For a cat identification system, for instance, the system might learn to pay attention to the shape of the ears and also learn to look for evidence of whiskers near the nose. Jumper compares what AlphaFold 2 does to the process of solving a jigsaw puzzle where “you can snap together certain pieces and be pretty sure of it, and then what you end up with are different local islands of solution, and then you figure out how to join these up.” The middle of the network, Jumper says, has learned to reason about geometry and space and how to join up those amino acid pairs it thinks are close together based on its analysis of the DNA sequences.
DeepMind trained AlphaFold 2 on 128 “tensor processing cores,” the number-crunching brains found on 16 special computer chips engineered for deep learning that Google designed and uses in its data centers, running continuously for what the company says was a few weeks. (These 128 specialized A.I. cores are about equivalent to 100 to 200 of the powerful graphics processing chips that deliver eye-popping animation on an Xbox or PlayStation.) Once trained, the system can take a DNA sequence and spit out a complete structure prediction “in a matter of days,” the company says.
Among AlphaFold 2’s advantages over its predecessor is a confidence gauge: The system produces a score for how sure it is of its own predictions for each amino acid in a structure. This metric is crucial if AlphaFold 2 is going to be useful to biologists and medical researchers who will need to know when they can reasonably rely on the model and when to have more caution.
Despite the stunning test results, DeepMind was still not certain how good AlphaFold 2 was. But they got an important clue when the coronavirus pandemic struck. In March of this year, AlphaFold 2 was able to predict the structure for six understudied proteins associated with SARS-CoV-2, the virus that causes COVID-19, one of which scientists have since confirmed using an empirical method called cryogenic electron microscopy. It was a powerful glimpse of the kind of real-world impact DeepMind hopes AlphaFold 2 will soon have.
An astonishing result
The CASP competition takes place between May and August. The Protein Structure Prediction Center releases batches of target proteins, and contestants then submit their structure predictions for evaluation. The rankings for this year’s competition were announced on Nov. 30.
Each prediction is scored using a metric called “global distance test total score,” or GDT for short, that in effect looks at how close, in angstroms, it is to a structure obtained by empirical methods such as X-ray crystallography or electron microscope. A score of 100 is perfect, but anything at 90 or above is considered equivalent to the empirical methods, Moult, the CASP director, says. The proteins are also classed into groups based on how difficult the CASP organizers think it is to get the structure.
When Moult saw AlphaFold 2’s results he was incredulous. Like Tunyasuvunakool months earlier, his initial thought was that there might be a mistake. Maybe some of the protein sequences in the competition had been published before? Or maybe DeepMind had somehow managed to get hold of a cache of unpublished data?
As a test, he asked Andrei Lupas, director of the department of protein evolution at the Max Planck Institute for Developmental Biology in Tuebingen, Germany, to conduct an experiment. Lupas would ask AlphaFold 2 to predict a structure that he knew for certain had never been seen before because Lupas had never been able to work out from X-ray crystallography what a key piece of the protein looked like. For almost a decade, Lupas had puzzled over this missing link, but the correct shape had eluded him. Now, with AlphaFold’s prediction as a guide, Lupas says, he went back to the X-ray data. “The correct structure just fell out within half an hour,” he says. “It was astonishing.”
Since DeepMind’s success in 2018’s CASP, many academic researchers have flocked to deep learning techniques. As a result, the rest of the field’s performance has improved: On a median difficulty target, the other competitors now have an average best prediction GDT of 75, up 10 points from two years ago. But there was no comparison to AlphaFold 2: It scored a median 92 GDT across all proteins, and even on the most difficult proteins it achieved a median score of 87 GDT. Moult says AlphaFold 2’s predictions are “on par with empirical methods,” such as X-ray crystallography. That conclusion lead CASP to make a momentous declaration on Monday, Nov. 30: The 50-year-old protein-folding problem had been solved.
Venki Ramakrishnan, a Nobel Prize–winning structural biologist who is also the current president of The Royal Society, Britain’s most prestigious scientific body, says AlphaFold 2 “represents a stunning advance” in protein folding. With AlphaFold 2, expensive and time-consuming empirical analysis with methods like X-ray crystallography and electron microscopes may become a thing of the past.
Janet Thornton, an expert in protein structure and former director of the European Molecular Biology Laboratory’s European Bioinformatics Institute, says that DeepMind’s breakthrough will allow scientists to map the entire human “proteome”—all the proteins found within the human body. Currently only a quarter of these proteins have been used as targets for drugs, but having the structure for the rest would create vast opportunities for the development of new therapies. She also says the A.I. software could enable protein engineering that might aid in sustainability efforts, allowing scientists to potentially create new crop strains that provide more nutritional value per acre of land planted, and also possibly allowing for the advent of enzymes that could digest plastic.
For now, though, the question remains about how exactly DeepMind will make AlphaFold 2 available. Hassabis says the company is committed to ensuring the software can “make the maximal positive societal impact.” But he says it has not yet determined how to do that, saying only that it will make an announcement sometime next year. Hassabis also tells Fortune that DeepMind is considering how it might be able to build a commercial product or partnership around the system. “This should be hugely useful for the drug discovery process and therefore Big Pharma,” he says. But exactly what form this commercial offering will take, he says, has not yet been decided either.
A commercial venture would be marked departure for DeepMind, which, since its sale to Alphabet, has not had to worry about generating revenue. The company briefly set up a division called DeepMind Health that was working with the U.K.’s National Health Service on an app that could identify hospital patients who were at risk of developing acute kidney injury. But the effort became embroiled in a controversy after news reports revealed DeepMind's hospital partner had violated the U.K. data protection laws by giving the company access to millions of patients’ medical records. In 2019, DeepMind Health was formally absorbed into a new Google health division. At the time, DeepMind said cleaving off its health effort would allow it to remain true to its research roots without the distraction of having to build a commercial unit that might replicate areas, such as data security and customer support, where Google already had expertise.
Of course, if DeepMind were to launch a commercial product, it would not be the first A.I. research company to do so: OpenAI, the San Francisco–based research company that is perhaps DeepMind’s closest rival, has become increasingly business-oriented. Last year, OpenAI launched its first commercial product, an interface that lets companies use an A.I. that composes long passages of coherent text from a short, human-written prompt. The business value of that A.I., called GPT-3, remains unproven, while DeepMind’s AlphaFold 2 could have an immediate bottom-line impact for a pharmaceutical company or biotechnology startup. At a time when antitrust regulators are probing Alphabet, having a viable commercial product could be a good insurance policy for DeepMind in the event it ever loses the unconditional support of its deep-pocketed parent in some future breakup of the Googleplex.
One thing is certain: DeepMind isn’t done with protein folding. The CASP competition was set up around predicting the structure of single proteins. But in biology and medicine, it is usually protein interactions that researchers really care about. How does one protein bind with another or with a particular small molecule? Exactly how does an enzyme break a protein apart? The problem of predicting these interactions and bindings will likely become the primary focus of future CASP competitions, Moult says. And Jumper says DeepMind plans to work on those challenges next.
Reverberations from AlphaFold 2’s success are certain to be felt in areas far removed from protein folding, too, encouraging others to apply deep learning to big scientific questions: finding new subatomic particles, probing the secrets of dark matter, mastering nuclear fusion, or creating room-temperature superconductors. DeepMind has an active effort already underway on astrophysics, Kohli says. Facebook’s A.I. researchers just launched a deep learning project aimed at finding new chemical catalysts. Protein folding is the first foundational scientific mystery to fall to the power of artificial intelligence. It won’t be the last.