重新分配財(cái)富的時(shí)間是不是到了?
這是兩位前政府官員在電視辯論節(jié)目中將要探討的話題,期間,IBM最新的人工智能軟件也貢獻(xiàn)了自己的綿薄之力。這兩位一位是希臘財(cái)政部的前部長(zhǎng),另一位是一名研究員,他們?cè)?jīng)對(duì)賣淫經(jīng)濟(jì)學(xué)(Economics of Prostitution)進(jìn)行過研究。
這場(chǎng)辯論于美國(guó)紐約時(shí)間晚間在彭博有線電視頻道播出,是系列節(jié)目《大有可辯》(That’s Debatable)的首秀劇集。每一集將圍繞不同的主題展開辯論。該劇集由媒體和活動(dòng)公司Intelligence Squared與Bloomberg共同打造,由Big Blue贊助。艾美獎(jiǎng)得主記者約翰·唐文將擔(dān)任該節(jié)目的主持人,他自2008年以來一直擔(dān)任Intelligence Squared辯論的主持人。
第一期辯論節(jié)目將邀請(qǐng)四位知名經(jīng)濟(jì)學(xué)家助陣,他們是美國(guó)財(cái)政部前部長(zhǎng)、哈佛大學(xué)前校長(zhǎng)拉里·薩默斯,美國(guó)勞工部前部長(zhǎng)羅伯特·賴克,直言不諱的希臘財(cái)政部前部長(zhǎng)雅尼斯·瓦魯法基斯,以及曼哈頓研究所高級(jí)研究員艾利森·希拉格(因其2019年的書作《從經(jīng)濟(jì)學(xué)角度來看待妓院:有助于理解風(fēng)險(xiǎn)的意外之地》而聞名)。
然而毫無疑問,IBM希望其Watson人工智能軟件至少能夠在一定程度上大出風(fēng)頭。特別值得一提的是,該節(jié)目將凸顯Watson最新功能:對(duì)數(shù)千條甚至數(shù)萬條個(gè)人評(píng)論和意見進(jìn)行分類和總結(jié),并將其歸納為一系列要點(diǎn)。
這一稱之為“要點(diǎn)分析”的功能源于IBM對(duì)“Project Debater”項(xiàng)目的研究,由該公司位于以色列的人工智能實(shí)驗(yàn)室團(tuán)隊(duì)主導(dǎo),涉及打造可以成功與人類辯論的人工智能軟件,并幫助人類從各種信息來源中尋找強(qiáng)有力的論點(diǎn)。
IBM希望將這種技術(shù)出售給各大工作,從而將其作為一種開展市場(chǎng)調(diào)研、從雇員和客戶中征求意見的新方式。IBM還認(rèn)為,政府亦能夠使用這一技術(shù)來更好地理解市民的意見。
IBM的首席人工智能建構(gòu)師達(dá)科西·阿古拉沃爾說:“話題收集和論點(diǎn)生成這類功能來自于Debater項(xiàng)目,而且已經(jīng)得到了部分客戶的使用。”他稱,要點(diǎn)分析將允許各大企業(yè)“搜集數(shù)萬個(gè)數(shù)據(jù)點(diǎn),并在提煉后助力制定數(shù)據(jù)驅(qū)動(dòng)型決策。”
小屏幕上的深藍(lán)
在過去三年中,IBM推出了一系列“大挑戰(zhàn)”公共活動(dòng),以展示基于人工智能的技術(shù),《大有可辯》電視節(jié)目便是其新近參加的一項(xiàng)活動(dòng)。
電視節(jié)目采用的要點(diǎn)總結(jié)工具可分析用戶針對(duì)某個(gè)問題通過網(wǎng)站提交的數(shù)千條評(píng)論。在這個(gè)節(jié)目中,這個(gè)問題就是辯題:重新分配財(cái)富的時(shí)候到了。
通過使用自然語言處理(可以分析并在一定程度上理解語言的人工智能技術(shù)),IBM系統(tǒng)會(huì)根據(jù)關(guān)聯(lián)性對(duì)這些評(píng)論打分,去除那些與主題無關(guān)的評(píng)論。然后,該工具將把剩余評(píng)論分為兩個(gè)大組:辯題正方與反方。
然后,它會(huì)使用其語言處理算法,總結(jié)每一個(gè)要點(diǎn)的精華,進(jìn)一步將每一個(gè)組別的評(píng)論歸納為幾個(gè)要點(diǎn),同時(shí)避免生成使用不同語言表達(dá)同樣觀點(diǎn)的重復(fù)要點(diǎn)。
軟件還會(huì)讓用戶知道所提交評(píng)論提到每個(gè)要點(diǎn)的頻率。率領(lǐng)Project Debater團(tuán)隊(duì)的IBM工程師諾亞姆·斯隆尼姆說:“精準(zhǔn)地告知數(shù)據(jù)中每個(gè)要點(diǎn)的相關(guān)性對(duì)決策者來說十分重要。”
“離題萬里”
《大有可辯》的主持人唐文稱,對(duì)比他以及其他辯論主持人在過去采用的常用做法——僅僅是隨機(jī)讓感興趣進(jìn)行評(píng)論的觀眾成員參與其中,該技術(shù)能夠更好地讓觀眾參與辯論。
他說:“在我看來,如果我隨機(jī)叫人舉手向辯手提問,觀眾的問題可能會(huì)讓人摸不著頭腦。說實(shí)話,我得篩選掉大量的問題,因?yàn)樗麄冇械闹貜?fù)性很高,有的離題萬里,有的存在表述問題。這項(xiàng)技術(shù)可以幫助應(yīng)對(duì)這一挑戰(zhàn)。”
Intelligence Squared的首席執(zhí)行官克里·科納稱,要點(diǎn)分析人工智能能夠讓公司從更廣泛、更多元化的人群吸取觀點(diǎn)。它還可以借此讓世界各地的人士通過網(wǎng)頁頁面提交意見。她說:“這一創(chuàng)新真的有助于我們了解更廣泛人群對(duì)這一問題的真正看法,可能會(huì)達(dá)到數(shù)萬人,而不是局限于此前在現(xiàn)場(chǎng)參加活動(dòng)的400至600名觀眾。”斯隆尼姆稱,他認(rèn)為這項(xiàng)技術(shù)甚至可能會(huì)被用于提升未來美國(guó)總統(tǒng)辯論的參與性。
為了培訓(xùn)人工智能系統(tǒng)能夠按照質(zhì)量給論點(diǎn)打分,IBM不得不創(chuàng)建了一個(gè)涵蓋3萬人立場(chǎng)的數(shù)據(jù)庫,其中涉及廣泛的話題,隨后,這些話題將交由10至15人的小規(guī)模人員討論組進(jìn)行評(píng)估。培訓(xùn)的結(jié)果隨后被用于指導(dǎo)人工智能如何辨別清晰、強(qiáng)有力的論點(diǎn)。
要點(diǎn)分析功能是IBM一項(xiàng)技術(shù)的提煉,該公司將該技術(shù)稱為“眾論”,于去年11月在英格蘭劍橋大學(xué)劍橋聯(lián)盟俱樂部舉辦的一場(chǎng)辯論賽中首次亮相。
總結(jié)大量文本并歸納要點(diǎn)的能力是人工智能研究的活躍領(lǐng)域,擁有巨大的商用潛力。僅在過去三個(gè)月中,由埃隆·馬斯克聯(lián)合創(chuàng)建、微軟參與注資的舊金山研究公司OpenAI公司以及舊金山另一家初創(chuàng)公司Primer,推出了能夠?qū)﹂L(zhǎng)文本文件進(jìn)行歸納總結(jié)的工具。與此同時(shí),F(xiàn)acebook的研究人員也在開發(fā)這類功能。(財(cái)富中文網(wǎng))
譯者:馮豐
審校:夏林
重新分配財(cái)富的時(shí)間是不是到了?
這是兩位前政府官員在電視辯論節(jié)目中將要探討的話題,期間,IBM最新的人工智能軟件也貢獻(xiàn)了自己的綿薄之力。這兩位一位是希臘財(cái)政部的前部長(zhǎng),另一位是一名研究員,他們?cè)?jīng)對(duì)賣淫經(jīng)濟(jì)學(xué)(Economics of Prostitution)進(jìn)行過研究。
這場(chǎng)辯論于美國(guó)紐約時(shí)間晚間在彭博有線電視頻道播出,是系列節(jié)目《大有可辯》(That’s Debatable)的首秀劇集。每一集將圍繞不同的主題展開辯論。該劇集由媒體和活動(dòng)公司Intelligence Squared與Bloomberg共同打造,由Big Blue贊助。艾美獎(jiǎng)得主記者約翰·唐文將擔(dān)任該節(jié)目的主持人,他自2008年以來一直擔(dān)任Intelligence Squared辯論的主持人。
第一期辯論節(jié)目將邀請(qǐng)四位知名經(jīng)濟(jì)學(xué)家助陣,他們是美國(guó)財(cái)政部前部長(zhǎng)、哈佛大學(xué)前校長(zhǎng)拉里·薩默斯,美國(guó)勞工部前部長(zhǎng)羅伯特·賴克,直言不諱的希臘財(cái)政部前部長(zhǎng)雅尼斯·瓦魯法基斯,以及曼哈頓研究所高級(jí)研究員艾利森·希拉格(因其2019年的書作《從經(jīng)濟(jì)學(xué)角度來看待妓院:有助于理解風(fēng)險(xiǎn)的意外之地》而聞名)。
然而毫無疑問,IBM希望其Watson人工智能軟件至少能夠在一定程度上大出風(fēng)頭。特別值得一提的是,該節(jié)目將凸顯Watson最新功能:對(duì)數(shù)千條甚至數(shù)萬條個(gè)人評(píng)論和意見進(jìn)行分類和總結(jié),并將其歸納為一系列要點(diǎn)。
這一稱之為“要點(diǎn)分析”的功能源于IBM對(duì)“Project Debater”項(xiàng)目的研究,由該公司位于以色列的人工智能實(shí)驗(yàn)室團(tuán)隊(duì)主導(dǎo),涉及打造可以成功與人類辯論的人工智能軟件,并幫助人類從各種信息來源中尋找強(qiáng)有力的論點(diǎn)。
IBM希望將這種技術(shù)出售給各大工作,從而將其作為一種開展市場(chǎng)調(diào)研、從雇員和客戶中征求意見的新方式。IBM還認(rèn)為,政府亦能夠使用這一技術(shù)來更好地理解市民的意見。
IBM的首席人工智能建構(gòu)師達(dá)科西·阿古拉沃爾說:“話題收集和論點(diǎn)生成這類功能來自于Debater項(xiàng)目,而且已經(jīng)得到了部分客戶的使用。”他稱,要點(diǎn)分析將允許各大企業(yè)“搜集數(shù)萬個(gè)數(shù)據(jù)點(diǎn),并在提煉后助力制定數(shù)據(jù)驅(qū)動(dòng)型決策。”
小屏幕上的深藍(lán)
在過去三年中,IBM推出了一系列“大挑戰(zhàn)”公共活動(dòng),以展示基于人工智能的技術(shù),《大有可辯》電視節(jié)目便是其新近參加的一項(xiàng)活動(dòng)。
電視節(jié)目采用的要點(diǎn)總結(jié)工具可分析用戶針對(duì)某個(gè)問題通過網(wǎng)站提交的數(shù)千條評(píng)論。在這個(gè)節(jié)目中,這個(gè)問題就是辯題:重新分配財(cái)富的時(shí)候到了。
通過使用自然語言處理(可以分析并在一定程度上理解語言的人工智能技術(shù)),IBM系統(tǒng)會(huì)根據(jù)關(guān)聯(lián)性對(duì)這些評(píng)論打分,去除那些與主題無關(guān)的評(píng)論。然后,該工具將把剩余評(píng)論分為兩個(gè)大組:辯題正方與反方。
然后,它會(huì)使用其語言處理算法,總結(jié)每一個(gè)要點(diǎn)的精華,進(jìn)一步將每一個(gè)組別的評(píng)論歸納為幾個(gè)要點(diǎn),同時(shí)避免生成使用不同語言表達(dá)同樣觀點(diǎn)的重復(fù)要點(diǎn)。
軟件還會(huì)讓用戶知道所提交評(píng)論提到每個(gè)要點(diǎn)的頻率。率領(lǐng)Project Debater團(tuán)隊(duì)的IBM工程師諾亞姆·斯隆尼姆說:“精準(zhǔn)地告知數(shù)據(jù)中每個(gè)要點(diǎn)的相關(guān)性對(duì)決策者來說十分重要。”
“離題萬里”
《大有可辯》的主持人唐文稱,對(duì)比他以及其他辯論主持人在過去采用的常用做法——僅僅是隨機(jī)讓感興趣進(jìn)行評(píng)論的觀眾成員參與其中,該技術(shù)能夠更好地讓觀眾參與辯論。
他說:“在我看來,如果我隨機(jī)叫人舉手向辯手提問,觀眾的問題可能會(huì)讓人摸不著頭腦。說實(shí)話,我得篩選掉大量的問題,因?yàn)樗麄冇械闹貜?fù)性很高,有的離題萬里,有的存在表述問題。這項(xiàng)技術(shù)可以幫助應(yīng)對(duì)這一挑戰(zhàn)。”
Intelligence Squared的首席執(zhí)行官克里·科納稱,要點(diǎn)分析人工智能能夠讓公司從更廣泛、更多元化的人群吸取觀點(diǎn)。它還可以借此讓世界各地的人士通過網(wǎng)頁頁面提交意見。她說:“這一創(chuàng)新真的有助于我們了解更廣泛人群對(duì)這一問題的真正看法,可能會(huì)達(dá)到數(shù)萬人,而不是局限于此前在現(xiàn)場(chǎng)參加活動(dòng)的400至600名觀眾。”斯隆尼姆稱,他認(rèn)為這項(xiàng)技術(shù)甚至可能會(huì)被用于提升未來美國(guó)總統(tǒng)辯論的參與性。
為了培訓(xùn)人工智能系統(tǒng)能夠按照質(zhì)量給論點(diǎn)打分,IBM不得不創(chuàng)建了一個(gè)涵蓋3萬人立場(chǎng)的數(shù)據(jù)庫,其中涉及廣泛的話題,隨后,這些話題將交由10至15人的小規(guī)模人員討論組進(jìn)行評(píng)估。培訓(xùn)的結(jié)果隨后被用于指導(dǎo)人工智能如何辨別清晰、強(qiáng)有力的論點(diǎn)。
要點(diǎn)分析功能是IBM一項(xiàng)技術(shù)的提煉,該公司將該技術(shù)稱為“眾論”,于去年11月在英格蘭劍橋大學(xué)劍橋聯(lián)盟俱樂部舉辦的一場(chǎng)辯論賽中首次亮相。
總結(jié)大量文本并歸納要點(diǎn)的能力是人工智能研究的活躍領(lǐng)域,擁有巨大的商用潛力。僅在過去三個(gè)月中,由埃隆·馬斯克聯(lián)合創(chuàng)建、微軟參與注資的舊金山研究公司OpenAI公司以及舊金山另一家初創(chuàng)公司Primer,推出了能夠?qū)﹂L(zhǎng)文本文件進(jìn)行歸納總結(jié)的工具。與此同時(shí),F(xiàn)acebook的研究人員也在開發(fā)這類功能。(財(cái)富中文網(wǎng))
譯者:馮豐
審校:夏林
Is it time to redistribute the wealth?
That's the topic two former Clinton administration officials, a former Greek finance minister and a researcher who has studied the economics of prostitution, explored in a televised debate—with a little help from IBM's latest artificial intelligence software.
The debate, which aired on Bloomberg's cable television channel in the U.S. New York time, is the debut episode of a series called "That's Debatable." Each episode will feature a debate on a different topic. The show is produced by the media and events company Intelligence Squared and Bloomberg, with sponsorship from Big Blue. John Donvan, an Emmy-winning journalist who has moderated debates for Intelligence Squared since 2008, is serving as the show's host and moderator.
The first debate featured four esteemed economists: Larry Summers, the former U.S. Treasury secretary and former president of Harvard University, Robert Reich, the former U.S. Labor secretary, Yanis Varoufakis, the outspoken former Greek finance minister, and Allison Shrager, a senior fellow at the Manhattan Institute known for her 2019 book, An Economist Walks Into a Brothel: And Other Unexpected Places to Understand Risk.
But IBM is no doubt hoping that, at least to some extent, its Watson A.I. software will have stolen the show. In particular, the television program highlights one of Watson's newest capabilities: categorizing and summarizing thousands, or even hundreds of thousands, of individual comments and opinions, and distilling them down to a handful of key points.
Called "key point analysis," the capability has grown out of IBM's "Project Debater" research, spearheaded by a team in its A.I. lab in Israel, which has involved building A.I. software capable of successfully debating humans—and helping humans surface strong arguments from a variety of different types of sources.
IBM hopes that it will be able to sell the technology to companies as a new way to conduct market research and solicit views from both employees and customers. The company also thinks the technology could be used by governments to better understand the views of citizens.
"Topic clustering and argument generation, those capabilities came from Debater and these are now being used with select customers," Dakshi Agrawal, IBM's chief architect for AI, said. He said key point analysis will allow businesses to "collect tens fo thousands of data points and distill them down to make more data-driven decisions."
Big Blue on the small screen
The company has staged a series of "grand challenge" public events in the past three years designed to showcase the A.I.-based technology, of which the "It's Debatable" T.V. program is the latest.
The key point summarization tool being featured in the television show can analyze thousands of comments that users submit through a website in response to a question, in this case, the debate proposition: "It is time to redistribute the wealth."
Using natural language processing—the kind of A.I. that can analyze and to some extent "understand" language—the IBM system scores these comments for relevancy, discarding those it sees as not being germane to the topic. Then it groups the remaining ones into two broad categories: those that support the proposition, and those that oppose it.
It then further groups the comments in each camp into a handful of key points, using its language processing algorithm to summarize the essence of each point and avoiding repetition of points that are simply expressing the same idea using different language.
The software also tells a user know how often each key point was mentioned by those submitting comments. "Actually conveying the prevalence of each keypoint in the data, this is important for decision-makers," Noam Slonim, the IBM engineer who leads the Project Debater team, said.
“Off in outer space”
Donvan, the "It's Debatable" host, said that the technology was a much better way to allow the audience to participate in the debate compared to what he and other debate moderators have typically done in the past, which is to simply call on audience members interested in making a comment more or less at random.
"Audiences can be very tricky for me in that I randomly call on people to raise their hands and ask a question of the debaters, and to be honest I have to throw out a large number of the questions because they are repetitive, or they off in outer space, or they are just not well articulated," he said. "This helps with that challenge."
Clea Conner, Intelligence Squared's chief executive officer, said the key point analysis A.I. allowed the company to incorporate views from a much broader and diverse group of people. It does so by enabling people anywhere in the world to submit opinions via a Web page. "This innovation is really helping us understand what a much larger group of people than the four or six hundred that could attend the event live previously, in this case thousands of people, where they really stand on the issue," she said. Slonim said he thought the technology could even be used to make future U.S. Presidential Debates more participatory.
To train an A.I. system to score arguments for quality, IBM had to create a database of 30,000 human-generated positions on a wide variety of topics which were then assessed by small human focus groups of 10 to 15 individuals, Slonim said. The results of this exercise were then used to teach the A.I. what constituted a coherent, strong argument.
The key point analysis feature is a refinement of a technology, which IBM called "speech by crowd," that it unveiled last November in a debate held at the Cambridge Union debating club at Cambridge University in England.
The ability to summarize large amounts of text and pull out key points is an active area of A.I. research with big potential commercial applications. In just the past three months, both OpenAI, the San Francisco research company that was co-founded by Elon Musk and has received funding from Microsoft, and Primer, another startup in San Francisco, have unveiled tools that can summarize long text documents. Researchers at Facebook have also been pursuing this capability too.