麻省理工和哈佛的人造肌肉可以讓機(jī)器人獲得“超能力”
麻省理工計算機(jī)科學(xué)和人工智能實(shí)驗室(CSAIL)發(fā)布新聞稿稱,該實(shí)驗室和哈佛大學(xué)維斯生物啟發(fā)工程研究所的科學(xué)家們在手工折紙的啟發(fā)下制造出了人造肌肉,其特點(diǎn)之一是可以讓機(jī)器人舉起重量達(dá)自身1000倍的物體。 但CSAIL主任丹妮拉·魯斯指出,其潛能還不止于此。她還說這項工作的基礎(chǔ)是她的團(tuán)隊以往的研究。 魯斯說:“你有可能讓機(jī)器人跑得更快,可以讓它飛起來,在水上行走,翻動或抓取物品,這要取決于你給它配備什么樣的外骨骼。” 她解釋說,每塊肌肉都包含一個可壓縮而又堅固的骨骼系統(tǒng),外面包著一層皮膚。皮膚和骨骼之間以液體填充,液體體積的變化帶來壓力差,壓力差產(chǎn)生張力,從而使肌肉可以在無人干預(yù)的情況下運(yùn)動。這些肌肉只需10分鐘就可制造,而且成本不超過1美元。編程后,這些肌肉就可以做多方向運(yùn)動,并且已經(jīng)有過不間斷伸縮好幾天的記錄。 魯斯說:“液體的作用是形成壓力差。像折紙一樣可壓縮的骨骼引導(dǎo)著向外的動作。巨大的力量則源于彈性材料的張力。這有點(diǎn)兒像借助滑輪和杠桿來增大力量。” 這些肌肉的用途相當(dāng)廣泛。研究者成功地用各類材料做出了多個版本,有金屬彈簧的,也有塑料泡沫的,尺寸也不一而足。魯斯認(rèn)為,這樣的靈活性意味著此項發(fā)明可用于許多領(lǐng)域,比如醫(yī)藥,比如建筑,再比如空間探索。 她說:“車間里可以使用柔軟的機(jī)器人,以便人和機(jī)器人安全互動。我們還可以用配備了此類外骨骼的柔軟機(jī)器人來幫助人們做動作。有時候我們可能需要醫(yī)用吊帶,現(xiàn)在這條吊帶可以自主運(yùn)動,而且它真的能帶動你的腿、胳膊或者背部肌肉,讓你隨心所欲的活動。”(財富中文網(wǎng)) 譯者:Charlie? |
Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Harvard’s Wyss Institute for Biologically Inspired Engineering created origami-inspired artificial muscles that, among other feats, allow robots to lift objects 1,000 times heavier than they are, according to a release from CSAIL. The possibilities don’t stop there, explains CSAIL Director Daniela Rus, adding that the work builds upon past research from her team. “You could get a robot to move faster, you could get a robot to fly, or to move on water, or to roll or to scoop things, depending on what kind of exoskeleton you attach to the robot,” she says. Each muscle, Rus explains, is made up of a compressible but solid skeletal system, encased by a bag of “skin.” The space between the skin and the skeleton is filled with fluid, and as the volume of fluid changes, alterations in pressure cause tension, which allows the muscles to move without human input. The muscles — which take just 10 minutes and less than $1 to create — can be programmed to move in multiple directions and have been shown to flex uninterrupted for days at a time. “The fluid is used to create a pressure difference. The origami compressible skeleton regulates the outward motion. And the strong force produced is due to the tension of the flexible material,” Rus explains. “It’s a little bit like using pulleys and levers to amplify force.” The muscles are also quite versatile. Researchers successfully built versions using a variety of materials, ranging from metal springs to packing foam, and in a wide array of sizes. That flexibility means the inventions could be used in arenas ranging from medicine to architecture to space exploration, Rus says. “We can have soft robots on the manufacturing floors for safe human-robot interactions. We could also have soft robots with these kinds of exoskeletons helping people with assisted movements,” Rus says. “Maybe you have a sling, and now the sling is active and really stimulates your legs or your arms or your back muscles to get to where you want to be.” |