精品国产_亚洲人成在线高清,国产精品成人久久久久,国语自产偷拍精品视频偷拍

立即打開
谷歌地球非洲抗瘧疾:或拯救無數人生命

谷歌地球非洲抗瘧疾:或拯救無數人生命

Sy Mukherjee 2017-05-02
谷歌近年來攜手慈善機構,積極與其它學術和公共健康組織開展合作,運用谷歌地球引擎的機器學習技術開展瘧疾傳染源的精確定位工作。

上周二是世界防治瘧疾日。近年來,在全球醫療界和許多公辦與私營瘧疾防治項目的共同努力下,瘧疾防治工作取得了顯著進步。2010年至2015年,全球瘧疾發病率下降了21%,瘧疾致死率下降了29%。不過瘧疾至今仍是一種十分兇險的傳染病,據世界衛生組織近日發布的數據顯示,僅在2015年,全球就有2.12億例瘧疾病例,導致了近43萬人死亡。

要想有效對抗瘧疾等傳染性疾病,首先要精確定位這些疾病的傳播區域,從而準確切斷它們的傳播路徑。這樣一來,一些預防性的措施(如防蚊設施)和相關治療資源才能得到更精確的部署。著眼于這一目標,谷歌近年來攜手比爾和梅琳達蓋茨基金會、克林頓健康倡議組織(CHAI)等慈善機構,積極與其它學術和公共健康組織開展合作,運用谷歌地球引擎的機器學習技術開展瘧疾傳染源的精確定位工作。

以上這些機構都參加了消滅瘧疾倡議組織(Malaria Eliminaiton Initiative)發起的DiSARM項目。該項目即將在非洲的斯威士蘭和津巴布韋兩國試行。它主要通過谷歌地球引擎技術對瘧疾傳染源進行精確定位。DiSARM項目負責人、加州大學舊金山分校的流行病學和生物統計學教授休?斯特羅克解釋了谷歌地球引擎技術何以能夠幫助我們對抗這種疾病。

他在一次刊登在谷歌官方博客的采訪中表示:“在斯威士蘭和津巴布韋,只要有人被確診得了瘧疾,工作人員就會前往感染發生的村子,精確采集感染地點的GPS定位數據。不過只看這些定位點,你還無法準確判定該地區的瘧疾風險。你還需要通過衛星圖像結合當地的降水、氣溫、坡度、海拔等環境因素,因為這些因素都會影響到蚊蟲的繁殖和寄生蟲的發育。”

斯特羅克還指出,除了能夠繪制出高清的“瘧疾風險地圖”,谷歌地球引擎還使這些輔助性(但又十分重要)的數據變得更易于采集。“過去我們必須要通過多個來源才能獲得這些數據,比如通過美國宇航局(NASA)、美國地質勘探局(USGS)以及世界各地的多所大學。有了谷歌地球引擎技術,這些數據在同一個地方就能收集到,而且利用谷歌的計算機就能進行處理。我們把谷歌地球引擎的衛星圖像數據與該國的國家瘧疾控制部門收集到的病例定位信息綜合到一起,然而進行建模,就能生成風險地圖,判定哪些區域的瘧疾爆發風險最高。”

另外,抗虐疾藥物的研發過程也能夠從這種技術中得到一定助力。本周一,世界衛生組織宣布,一種試驗性的瘧疾疫苗下一階段將在非洲進行首次試點應用。(財富中文網)

譯者:樸成奎

Tuesday is World Malaria Day. The global health community and a coalition of public-private initiatives has successfully begun taming the scourge, with a 21% decrease in its global incidence and 29% drop in mortality rate between 2010 and 2015; still, there were 212 million malaria cases worldwide and nearly 430,000 deaths from the disease in 2015, according to the latest World Health Organization (WHO) figures.

One key tactic for fighting infectious diseases like malaria is to pinpoint exactly where they're spreading in order to stop them in their tracks. This way, preventive measures like mosquito control and the deployment of treatment resources can be better targeted. Google, the Bill & Melinda Gates Foundation, and the Clinton Health Access Initiative (CHAI) have banded together with academic and public health partners with this very goal in mind—and are harnessing machine learning through the Google Earth Engine to accomplish it.

The organizations are taking part in a Malaria Elimination Initiative effort called project DiSARM which will be piloted in Swaziland and Zimbabwe and uses the Google Earth Engine to map malaria. The University of California, San Francisco's (UCSF) epidemiology and biostatistics professor Hugh Sturrock—who leads DiSARM—explained exactly why Google's tech can help fight the disease.

"Every time someone is diagnosed with malaria in Swaziland and Zimbabwe, a team goes to the village where the infection occurred and collects a GPS point with the precise infection location," he said in an interview posted on Google's blog. "Just looking at these points won’t allow you to accurately determine the risk of malaria, though. You also need satellite imagery of conditions like rainfall, temperature, slope and elevation, which affect mosquito breeding and parasite development."

In addition to producing high-resolution "risk maps," the Google Earth Engine makes this seemingly ancillary (yet critical) data far easier to collect, according to Sturrock. " In the past we had to obtain those images from a range of sources: NASA, USGS and different universities around the world. But with Google Earth Engine, it’s all in one place and can be processed using Google computers. We combine satellite imagery data from Google Earth Engine with the locations of malaria cases collected by a country’s national malaria control program, and create models that let us generate maps identifying areas at greatest risk."

Concurrent advances in malaria drug development could also get a boost from this type of tech; on Monday, the WHO announced the next phase of a real world trial testing an experimental malaria vaccine in Africa.

熱讀文章
熱門視頻
掃描二維碼下載財富APP

            主站蜘蛛池模板: 曲周县| 察隅县| 通州市| 平山县| 富宁县| 柳江县| 山东省| 凤台县| 阿图什市| 梓潼县| 蒙阴县| 莫力| 七台河市| 望奎县| 江川县| 德钦县| 邢台市| 嘉祥县| 阿拉尔市| 独山县| 尤溪县| 望奎县| 华坪县| 克东县| 平谷区| 肇州县| 寻甸| 运城市| 万年县| 凤翔县| 左贡县| 定西市| 竹山县| 田林县| 东安县| 巴彦县| 广南县| 金乡县| 承德市| 扶余县| 内黄县|