2045年的世界什么樣

生物科技時代 ????德米特里?伊茨科夫將他的阿凡達項目視為人類進化的下一步,他這么做并不一定是頭腦發昏。但彼得?戴爾蒙迪斯博士的闡述可能更清晰:地球上剛剛開始出現生命時,為了提高存活能力,一些細胞進化出細胞核以及其他更先進的細胞器,出現了低級單細胞生物體到更復雜的單細胞生物體的飛躍。也就是說,當這些細胞接納、整合更好的生物技術時,它們獲得了巨大且重要的發展。庫茲韋爾繪制了一幅類似的進化軌跡,詳述了人類生命史上的其他質變時刻,例如:一些早期動物的大腦中進化出新的皮層(新皮層主管感官知覺和意識思維等更高功能)時,我們迎來現代哺乳動物的誕生;再比如,部分靈長類動物在我們現在所知的大腦額葉區進化出更大量的新皮層時,區別人和動物的大腦部分形成。 ????包括庫茲韋爾和戴爾蒙迪斯在內的一些與會發言人表示,人類是唯一能延伸生物特性的物種——數千年前我們已經能這么做了,通過使用科技,我們現在的出行速度更快,力量更大,能夠聽到不在聽力范圍之內、甚至是身處另外一個大洲的人說話。我們現在要著手做的是,更進一步把融入我們的生物特性中,比如,通過將病人自己的細胞培養出的可移植器官或是將可移植的機器放入人體內,來更改或改善身體性能(心臟起搏器就是一個例子)。 ????隨著納米技術向更小更強的領域進一步迅猛發展,微型設備將成為醫療和日常生活的常規部分。此外,我們已經開始明白,身體更像是一臺機器,即生物學(和遺傳學)是軟件,驅動我們身體的硬件。我們已經在實驗室環境下的基因治療、3D打印器官和干細胞治療等技術中見識到:通過對軟件重新編碼,就能對身體這臺機器進行程序改編。 ????而且,回顧之前提到的大腦圖譜,擁有在超級電腦上模擬身體中最復雜功能的這種能力意味著我們很快就會越來越擅長治療身體中損壞的部分,優化運行不太理想的部分,最終能夠使用移植和其他技術改善身體狀況和思維。怎樣做呢?“未來機器將越來越分子化,”丘奇說。換言之,通過融合生物兼容材料、3D打印、干細胞技術和遺傳學的突破,我們將會創造出新的機器,它們看上去更像生物體、而不是智能手機。未來生物技術氣息濃厚,如果半機械人的屬性讓你覺得不自在,你也只能接受。“其實現在的我們相比以前已經有了很大的延伸,”丘奇對觀眾說。“要去適應這些變化。” |
The biotechnology age ????Dmitry Itskov views his Avatar Project as the next evolutionary step for humankind, and he's not necessarily crazy for doing so. But perhaps Dr. Peter Diamandis sells it more clearly: When life on this planet began, the leap from simple single-celled organisms to more complex single-celled organisms occurred when some cells evolved a nucleus and other more advanced organelles that enhanced their survivability. That is, when these cells embraced and integrated better biotechnology they made a huge and critical leap forward. Kurzweil draws a similar evolutionary trajectory describing other advances in the history of human life, like when some early animals developed the neocortex in the brain (the neocortex is home to the higher functions like sensory perception and conscious thought) giving rise to modern mammals and again when some primates developed a good deal more neocortex in the area now known as the frontal lobe -- or the part of the brain that makes humans human. ????Several speakers, including Kurzweil and Diamandis, noted that humans are the only species that extend our biological reach -- we've done so for millennia with technologies that allow us to travel faster, increase our strength, or hear someone that is out of earshot (or on another continent). What we're starting to do now is integrate that technology more deeply into our biologies, be it through transplantable organs fabricated from a patient's own cells or implantable machines that are placed inside the body to alter or improve its performance (like pacemakers). ????As nanotechnology marches further into the realm of the ever-smaller-and-more-capable, tiny machines are going to become a regular part of medical therapies and our everyday lives. Moreover, we've begun to understand the body more like a machine itself; that is, that biology (and genetics) is the software driving our bodily hardware. We're already seeing this in the lab via gene therapies, 3-D printed organs, and stem cell treatments -- the reprogramming of the human machine by recoding the software. ????Further, harkening back to the aforementioned brain map, the ability to model all of the body's most complex functions on supercomputers means we're rapidly going to become better and better at fixing what's broken, optimizing what doesn't work well, and ultimately enhancing both our bodies and our minds with implants and other technologies. How? "In the future, machines will become more molecular," Church said. In other words, converging breakthroughs in biocompatible materials, 3-D printing, stem cell technologies, and genetics will lead to new kinds of machines that look less like a smartphone and more like biological objects. And if the cyborg-like nature of this biotech-heavy future makes you uncomfortable, there's not much you can do about it. "We already augment ourselves extensively," Church told the audience. "Get used to it." |